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Foreword
It is always something very special when progress is made on a century-old conjecture
that has not seen progress for almost 30 years. As such I was immediately intrigued when
one of my professors pointed me to an article claiming to have made a new discovery
regarding the prime power conjecture for finite projective planes.
The prime power conjecture states that the order of a finite projective plane must always
be a prime power. It is a famous problem in finite geometry and combinatorics. The
theory of projective planes has a long history, and at the beginning of the 20th century
projective planes with order pn for any prime power pn became known. However, no one
could find a projective plane that had an order that is not a prime power. Thus, it was
conjectured that no such plane exists, and (at the time of publishing of this thesis) the
conjecture still stands today.
The aim of this thesis is to critically analyse an approach to the prime power conjecture
proposed by Mingchun Xu. In chapter 1 we define basic terminology from design theory
and collect some results needed in this thesis. Then we will deal with projective planes
and their history in chapter 2. Chapter 3 then deals with a class of projective planes
called translation planes. The known planes not covered in this chapter are called
non-translation planes and we describe all known constructions in chapter 4. In chapter 5
we prove the Bruck-Ryser-Chowla theorem and describe the state of the prime power
conjecture at the time of publication of this thesis. After that we will take a look at
Xu’s attempted generalisation of the Bruck-Ryser-Chowla theorem in chapter 6, explain
why it does not work and try to make some progress using a closely related approach.
Chapter 7 gives a short overview of projective planes of small order and we look at some
other conjectures about projective planes. Finally, in chapter 8 we summarise the results
and give some final thoughts.

All computations by the author were done in SageMath [49], and all images in this
thesis were drawn by the author using Inkscape [18].
I would like to express my gratitude to Professor Kalhoff for his support and helpful
discussions during the writing of this thesis.
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Notation:
N is the set {1, 2, 3, . . .}
P(M) denotes the power set of a set M
Fm×n denotes the set of all (m× n)-matrices with m rows, n columns and entries in F
aij denotes the entry in row i and column j of a matrix A
GL(n, F ) denotes the set of all invertible (n× n)-matrices with entries in F
If q is a prime power, we write GL(n, q) = GL(n,Fq)
In denotes the (n× n)-identity matrix
Jn denotes the (n× n)-matrix where every entry is 1
Fq denotes the finite field with q elements
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1 Design Theory
Our approach to the prime power conjecture is rooted in design theory. In this chapter
basic definitions and theorems are given that will be used throughout this thesis.

1.1 Basic results
This section is based on Chapter 1 from the book “Designs and their Codes“ by Assmus
and Key [2] with some definitions simplified or altered to better fit our purpose.
Finite projective planes, which this thesis deals with, are a special case of symmetric
designs. In this section we give an introduction into the field of design theory, fixing
notation along the way.

Definition. Let P and B be (finite) disjoint sets and I ⊆ P × B. Then the triple
S = (P ,B, I) is called a (finite) incidence structure. The elements of P are called points
(denoted with lower case letters) and the elements of B are called blocks or sometimes
lines in a geometric context (denoted with upper case letters). If (p,B) ∈ I, then the
point p is said to be incident with the block B and the pair (p,B) is called flag. We
denote this as p I B. We also say B contains p or p is in B.

This definition is very broad and offers little to work with. However, it is the basis of
design theory and using it we can state some definitions to come in an easier way. We are
interested in incidence structures exhibiting a certain kind of regularity, called designs.

Definition. Let t, v, k, λ ∈ N with t ≤ k be natural numbers. A t-(v, k, λ) design (or for
short t-design) is a pair D = (P ,B, I) such that

• |P| = v

• Any block B ∈ B is incident with precisely k points.

• For any t pairwise distinct points p1, . . . , pt ∈ P there exist precisely λ blocks
B1, . . . , Bλ ∈ B such that the points p1, . . . , pt are all incident with Bi for every
i = 1, . . . , λ.

We will call the numbers t, v, k and λ the parameters of D.

This definition allows different blocks to be incident with the same set of points. It is
an important concept in general, but it is not needed in this thesis. Designs without such
repeated blocks are called simple. Throughout this thesis we will always mean “simple
design“ when writing “design“. This also allows us to simplify the definition of a t-(v, k, λ)
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1 Design Theory

design a bit: We can view the blocks as the set of points incident with it, i.e. as a subset
of P . Then the relation I becomes the membership relation ∈. Thus, for our purposes if
D = (P ,B, I) is a design, we will assume B ⊆ P(P) and I =∈, and write D = (P ,B)
for short. We will also adopt this convention for arbitrary incidence structures: when no
incidence relation is mentioned, we will assume B ⊆ P(P) and I =∈.

1.1 Example. Let v, k ∈ N be positive integers with k ≤ v. Let P be a set with v
elements and B be the set of all subsets of P with exactly k elements. Then D = (P ,B)
is a k-(v, k, 1) design.

Designs of this type are not very interesting and some theorems even do not hold for
the cases k = 1 or k = v. Thus, they sometimes need to be exlcuded. This motivates the
following definition:

Definition. A t-(v, k, λ) design is called trivial if every k-element subset of P is a block.

Stepping away from trivial designs, we now give a very well-known example for a
design: the Fano plane. It is not only important in design theory, but it is also an
important object in projective geometry and many other mathematical areas.

1.2 Example. The Fano plane is a 2-(7, 3, 1) design. In other words it consists of 7
points and sets of 3 points as blocks such that any 2 distinct points are contained in
exactly one block. An easy way to construct it is to use F7 as the set of points and
the set {1, 2, 4} (i.e. the squares modulo 7) and its translates as blocks. Written down
explicitly, we have P = {0, 1, 2, 3, 4, 5, 6} and

B = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}, {0, 1, 3}}.

It is easily checked that this is indeed a 2-(7, 3, 1) design. This construction comes from a
general construction using squares and difference sets, again showing that the Fano plane
has connections to many different topics. A nice visualisation is given in figure 1.1.

We now investigate the parameter t of a design. It turns out that a t-design can also
be viewed as an s-design for any integer 1 ≤ s ≤ t. This allows us for example to use
theorems on 2-designs for t-designs with t > 2. The theorem also gives rise to some
divisibility constraints on the parameters of a design. However, they do not help us with
the types of designs that we want to deal with, so we do not explicitly state them here.

1.3 Theorem. Let D be a t-(v, k, λ) design and S be a set of s points with 0 ≤ s ≤ t.
Then the number λs of blocks containing S is independent of the choice of the s points
and is given by the formula

λs = λ
(v − s)(v − s− 1) · · · (v − t+ 1)
(k − s)(k − s− 1) · · · (k − t+ 1) .

It follows that D is also an s-(v, k, λs) design for every integer s with 1 ≤ s ≤ t.
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1 Design Theory

Figure 1.1: The Fano plane

Proof. We consider the set

X := {(T,B) | S ⊆ T ⊆ B, |T | = t, B ∈ B}

and compute |X| in two ways.
First, we count how many sets T contain S and have exactly t elements. We can view
this as augmenting S to T , i.e. we have to choose t− s points from the v − s points not
contained in S. Now given a set T ⊆ P with |T | = t and S ⊆ T , we need to count the
blocks containing T . As D is a t-(v, k, λ) design, there are λ such blocks. Thus, we get

|X| = λ

(
v − s
t− s

)
.

Now we compute |X| another way. Let the number of blocks containing S be m. Given
a block B ∈ B with S ⊆ B we have to count the number of sets T with S ⊆ T ⊆ B
and |T | = t. This can be viewed as choosing t− s points of the k − s points of B not
contained in S. Thus, we get

|X| = m

(
k − s
t− s

)
.

Comparing the two results we get

λ

(
v − s
t− s

)
= m

(
k − s
t− s

)
.

We see that the number m of blocks containing S does not depend on the choice of points
but only on the size of S. Thus, the number λs is well-defined and rearranging the above
equation yields the desired formula.
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1 Design Theory

Theorem 1.3 gives a formula to calculate the number of blocks of a design (s = 0) and
the number of blocks containing a given point (s = 1). Since those formulas are very
important and helpful, we record them in a corollary:
1.4 Corollary. Let D be a t-(v, k, λ) design. Then we have:
(a) D has exactly

b := λ0 = λ
v(v − 1) · · · (v − t+ 1)
k(k − 1) · · · (k − t+ 1)

blocks.

(b) Every point of D is contained in exactly

r := λ1 = λ
(v − 1)(v − 2) · · · (v − t+ 1)
(k − 1)(k − 2) · · · (k − t+ 1)

blocks. The number r is called replication number of D.
We define another important parameter based on theorem 1.3:

Definition. Let D be a t-design with t ≥ 2. We call the number n := r − λ2 the order
of D.
This definition seems arbitrary at first, but it turns out that the order is of crucial

importance when building linear codes from designs in coding theory. It is also a vital
piece of the prime power conjecture.
Some simple relations between the parameters are collected in the following lemma:
1.5 Lemma. Let D be a t-(v, k, λ) design. Then we have:
(1) vr = bk

(2) r(k − 1) = λ2(v − 1)

(3) n = 0⇐⇒ k = v

Proof. (1) Double-count the set of flags S := {(p,B) ∈ P × B | p ∈ B}. There are v
points and every points lies on r blocks, so we have |S| = vr. On the other hand D has
b blocks and every block contains k points. Thus, we have |S| = bk, giving the desired
formula.
(2) Compare the formulas for s = 1 and s = 2 from theorem 1.4. We have

r = λ1 = λ
(v − 1)(v − 2) · · · (v − t+ 1)
(k − 1)(k − 2) · · · (k − t+ 1)

and
λ2 = λ

(v − 2)(v − 3) · · · (v − t+ 1)
(k − 2)(k − 3) · · · (k − t+ 1) .

Those two expressions only differ by a factor of (v − 1)/(k − 1). Rearranging gives the
desired result.
(3) The order n = r − λ2 is zero if and only if r = λ2. By (2) this is exactly the case
when k − 1 = v − 1.
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1 Design Theory

Thus, if we have a design with k < v, then its order n is positive.
We now describe two standard ways to obtain a new structure from an existing one.
They will be especially helpful for symmetric designs that we will work with later.

Definition. Let D = (P ,B, I) be an incidence structure. Then the structure D∗ =
(B,P , I∗) with

(p,B) ∈ I ⇐= (B, p) ∈ I∗ for all p ∈ P , B ∈ B
is called the dual of D.

For a design D = (P ,B) the dual can be obtained by considering B as the set of points
and P as the set of blocks. The latter is done by identifying a point p with the set of
all blocks that it is contained in. This identification obviously only works for simple
designs. Note that if D is a design, then D∗ is a 1-design but not always a 2-design. This
is because if D∗ is a 2-design, it has the parameters 2-(b, r, λ̃) for some integer λ̃. Thus,
any two blocks of D need to intersect in a constant number of points. This is usually not
the case for arbitrary designs. We will see that the designs D such that D∗ is a 2-design
are precisely the symmetric designs we will deal with later.
Another important related structure is the complement:

Definition. Let D = (P ,B, I) be an incidence structure. Then the structure D =
(P ,B, I) with

I := (P × B) \ I
is called the complement of D.

For a design D the complement D is obtained by exchanging every block B for its
complement BC (note that we consider the blocks as subsets of the point set P).

1.6 Lemma. Let D be a t-(v, k, λ) design with v−k ≥ t. Then D is a t-(v, v−k, b−2r+λ)
design.

Proof. Since we have v − k ≥ t, the parameter t is feasible for D. The set of points does
not change, so D has v points, and the blocks of D have v − k points because the blocks
of D have k points.
Now let p, q ∈ P be two distinct points. We need to count the number of blocks of D
that contain p and q, i.e. the blocks of D containing neither p nor q. There are r blocks
containing p, r blocks containing q, and λ blocks containing both points. Thus, there
are 2r − λ blocks containing at least one of the two points. This means that there are
b− 2r + λ blocks containing neither p nor q.

The question of which designs are “essentially the same“ comes up naturally. Relabeling
points should yield the same design, albeit written down in a different manner. Thus,
we need a notion of equivalence for designs, so that we can identify two designs having
essentially the same structure with each other.

Definition. Let D = (P ,B) and D′ = (P ′,B′) be t-designs. A bijection ϕ : P ∪ B →
P ′ ∪ B′ is called isomorphism between D and D′ if the following conditions are satisfied:

11



1 Design Theory

(1) ϕ(P) = P ′ and ϕ(B) = B′

(2) For any p ∈ P and B ∈ B: p ∈ B ⇐⇒ ϕ(p) ∈ ϕ(B)

If there exists an isomorphism between D and D′, they are called isomorphic, denoted as
D ∼= D′. An isomorphism of D onto itself is called automorphism.
Furthermore if D ∼= D∗, then D is called self dual.

Note that we do not have to map the blocks of D explicitly. As we only deal with
simple designs, the image of a block B ∈ B must be exactly the set of images of the
points contained in it. Thus, we could simplify the definition to require only a bijection
between P and P ′ with the map between B and B′ defined implicitly. However, this
approach fails for designs with repeated blocks, and because the above definition is the
standard one, we leave it as is.
Now we will define the incidence matrix of a design. It is an important tool for examining
designs because it lets us use theorems on matrices from linear algebra.

Definition. Let D = (P ,B) be a t-design. Write P = {p1, . . . , pv} and B = {B1, . . . , Bb}
for arbitrary orders of the elements of P and B. Then the incidence matrix A = (aij) of
D is a (v × b)-matrix with entries in {0, 1} defined by

aij =
{

1, if pi ∈ Bj

0, if pi 6∈ Bj
.

Its rows and columns are called incidence vectors (of a point or block).

Of course the incidence matrix depends on the chosen orders for P and B. If we
choose another order on P , the incidence matrices are related by a multiplication with a
(v× v)-permutation matrix from the left, and similarly a different order on B corresponds
to multiplication with a (b× b)-permutation matrix from the right. Since we are only
interested in designs up to isomorphism, the orders of the points and blocks does not
matter.
An important property of incidence matrices that will be used very often in this thesis is
stated in the following lemma.

1.7 Lemma. The incidence matrix A of a 2-(v, k, λ) satisfies the following equations:

(a) AAT = (r − λ)Iv + λJv =



r λ λ · · · λ
λ r λ · · · λ

λ λ r
. . . ...

... ... . . . . . . λ
λ λ · · · λ r


(b) det(AAT ) =

(
r + λ(v − 1)

)
(r − λ)v−1 = rknv−1
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1 Design Theory

Proof. (a) The entries of AAT are scalar products of the incidence vectors of points.
Thus, the diagonal entries are equal to the number of blocks that contain a given point
(which is r), and the off-diagonal entries are equal to the number of blocks that contain
two given distinct points (which is λ).
(b) One way to calculate the determinant is to use row and column operations to obtain
the triangular matrix 

r + (v − 1)λ ∗ · · · ∗
0 r − λ . . . ...
... . . . . . . ∗
0 . . . 0 r − λ

 .

Another way is to note that the matrix AAT has r + (v − 1)λ as an eigenvalue with
multiplicity 1 (with eigenvector (1, . . . , 1)T ) and (r − λ) as an eigenvalue with multiplic-
ity v − 1 (with eigenvectors (1,−1, 0, . . . , 0)T , (0, 1,−1, 0, . . . , 0)T , . . . , (0, . . . , 0, 1,−1)T ).
Either way, we obtain

det(AAT ) = (r − λ(v − 1))(r − λ)v−1.

By definition we have n = r−λ and by lemma 1.5 we have r+λ(v−1) = r+r(k−1) = rk,
giving the desired formula.

Now we are ready to prove Fisher’s inequality. It relates the number of points v to the
number of blocks b and motivates the study of symmetric designs.

1.8 Theorem (Fisher’s inequality). Let D be a t-(v, k, λ) design with t ≥ 2 and k < v.
Then v ≤ b.

Proof. Since k < v, we have n > 0. If D is a t-design with t ≥ 2, it is also a 2-design by
theorem 1.3, so we can apply the above lemma to obtain

det(AAT ) = rknv−1 > 0.

Thus, AAT is an invertible (v × v)-matrix. But then we have

rank(A) ≥ rank(AAT ) = v,

where the rank is taken over the field of rational numbers Q, so A needs to have at least
v columns, i.e. b ≥ v.

Definition. A t-(v, k, λ) design is called symmetric if it has the same number of points
and blocks, i.e. v = b.
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1.2 Symmetric designs
By Fisher’s inequality symmetric designs have the smallest possible number of blocks
among all non-trivial designs. In a practical setting this could mean minimal costs, for
example if every block represents a test for a disease, an object to be built or similar
things. Sometimes it is also surprisingly simple to write down all blocks of a symmetric
design. For bigger designs with less internal structure writing down every block can be a
big problem.
Note that the incidence matrix of a symmetric design is quadratic but not necessarily
symmetric. In this context the term “symmetric“ is somewhat misleading, but it is the
standard name for those designs.
This section is based on chapter 4 from “Designs and their Codes“ by Assmus and Key [2].

1.9 Remark. There are many different equivalent definitions for a symmetric design.
Here we collect a few:

(a) v = b

(b) r = k

(c) Any two distinct blocks have exactly λ points in common.

Although symmetric designs have nice properties, there are only interesting (i.e. non-
trivial) symmetric designs for t = 2. This might be a little disappointing at first, but
there is still a lot to discover about symmetric designs.

1.10 Theorem. Every symmetric t-(v, k, λ) design D with t ≥ 3 is trivial, i.e. every
subset of P with k elements is a block.

Proof. Without loss of generality we assume t = 3. If we have a design with t > 3, we
view it as a 3-(v, k, λ3) design according to theorem 1.3. Furthermore, we assume k < v,
otherwise D is obviously trivial.
Choose any point p ∈ P and consider the structure Dp := (Pp, Bp) defined by

Pp = P \ {p}, Bp = {B \ {p} |B ∈ B with p ∈ B}.

It consists of all points except p together with all blocks that contain p. It is easy to
check that Dp is a 2-design (in general if D is a t-design, then Dp is a (t − 1)-design).
Since D has v points and p is contained in exactly r blocks, Dp has v − 1 points and
r = k blocks (D is symmetric), each containing k − 1 points. As we have k < v, we have
k − 1 < v − 1, so we can invoke Fisher’s inequality for Dp to obtain

v − 1 ≤ r = k.

Since k < v, k can only equal v − 1. This means that D is a trivial t-(v, v − 1, λ)
design.
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In view of this theorem we will only deal with symmetric 2-designs. From now on
if we write “symmetric“ design, we mean a symmetric 2-design. We will also assume
λ < k < v − 1 because designs with k = λ, k = v − 1 or k = v are trivial.
One symmetric design actually gives rise to three more symmetric designs, that may or
may not be isomorphic to the first one.

1.11 Lemma. Let D be a symmetric 2-(v, k, λ) design. Then its dual D∗ is a symmetric
2-(v, k, λ) design, its complement D is a symmetric 2-(v, v − k, v − 2k + λ) design and
the complement of the dual D∗ is a symmetric 2-(v, v − k, v − 2k + λ) design.

Proof. By definition D∗ is a 1-(b, r, k) design. Since D is symmetric, we have v = b, r = k
and any two blocks intersect in precisely λ points by remark 1.9. Thus, D∗ is a 2-(v, k, λ)
design.
By our assumptions we have k ≤ v − 2, so we can apply lemma 1.6. We obtain that
D and D∗ are designs with parameters 2-(v, v − k, v − 2k + λ) and they are symmetric
because taking the complement of a design does not change the number of blocks.

It is easy to see that D∗ = D
∗, so the order of operations does not matter and does

not give rise to two different designs.
Some examples of symmetric designs are the following.

1.12 Example. (a) The Fano plane from example 1.2 is symmetric and its complement
is a symmetric 2-(7, 4, 2) design. Both designs are self dual.
(b) The 2-(4n− 1, 2n− 1, n− 1)-Hadamard designs (n ∈ N):
An incidence matrix of a Hadamard design can be derived from a Hadamard matrix,
i.e. an (n× n)-matrix H with HHT = nIn and entries only +1 and −1. The Hadamard
designs can be constructed by taking a normed Hadamard matrix of size 4n (i.e. all
entries in the first row and column are equal to 1), deleting the first row and column
and exchanging all −1 for 0. Their complements are 2-(4n− 1, 2n, n) designs and are
sometimes also called Hadamard designs.

Hadamard designs are important because they realise an extreme case for symmetric
designs. They have as few points as possible given the order n. We have the following
theorem:

1.13 Theorem. Let D be a symmetric 2-(v, k, λ) design with order n. Then we have

4n− 1 ≤ v ≤ n2 + n+ 1.

Proof. By lemma 1.5b and because D is symmetric, we have

k(k − 1) = λ(v − 1).

It follows that λ divides k(k− 1), so it also divides (k− λ)(k− λ− 1) = n(n− 1). Write
n(n− 1) = λµ for some integer µ ≥ 0. Then we have

v = k(k − 1)
λ

+ 1 = (n+ λ)(n+ λ− 1)
λ

+ 1
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= n(n− 1) + λn+ λn− λ+ λ2

λ
+ 1 = 2n+ λ+ µ.

We start with the case n = 1 so that we can assume n ≥ 2 and thus µ > 0 later. If
n = 1, then we have µ = 0, k = n + λ = λ + 1 and v = 2n + λ + µ = λ + 2. Thus, D
is a 2-(λ + 2, λ + 1, λ) design. But then we have k = v − 1, violating our assumption
k < v − 1, so the case n = 1 is not possible.
Now assume n ≥ 2. For the upper bound note that we have λ, µ ≥ 1. It follows that
(λ− 1)(µ− 1) ≥ 0, or equivalently λ+ µ ≤ λµ+ 1. We obtain

v = 2n+ λ+ µ ≤ 2n+ λµ+ 1 = 2n+ n(n− 1) + 1 = n2 + n+ 1.
For the lower bound note that

(λ− µ)2 = (λ− (v − 2n− λ))2 = (2(n+ λ)− v)2 = (2k − v)2 = v2 − 4kv + 4k2

= v2 − 4k(v − 1)− 4k + 4k2 = v2 − 4k(v − 1) + 4k(k − 1)
= v2 − 4k(v − 1) + 4λ(v − 1) = v2 − (4k − 4λ)(v − 1) = v2 − 4n(v − 1).

Since λµ = n(n − 1), we have λ 6= µ because n(n − 1) can never be a perfect square
(remember that n > 1). Thus, we have

0 < (λ− µ)2 = v2 − 4n(v − 1)
and we obtain

v2 − 4n(v − 1)− 1 ≥ 0.
Rearranging gives

(v − 1)(v − 4n+ 1) ≥ 0,
and as we have v > 1, we finally obtain v ≥ 4n− 1.

For many n ∈ N there are symmetric designs with 4n − 1 and n2 + n + 1 points,
respectively. However, in general it is an open question for which values of n such designs
exist. The case v = 4n− 1 is realised by the Hadamard designs from example 1.12b, and
the case v = n2 + n+ 1 is realised by the finite projective planes that we will deal with
in the next chapter.
We close this chapter with a theorem characterizing symmetric designs with order n and
n2 + n+ 1 points.
1.14 Theorem. Let D be a symmetric design with order n ∈ N and v = n2 + n + 1
points. Then D is either a 2-(n2 + n + 1, n + 1, 1) design or its complement, i.e. a
2-(n2 + n+ 1, n2, n(n− 1)) design.
Proof. In the proof of the upper bound of theorem 1.13, the case v = n2 + n+ 1 occurs
exactly when (λ−1)(µ−1) = 0, i.e. λ = 1 or µ = 1. Since we have λµ = n(n−1), we can
directly write down the parameters of the resulting designs. The case λ = 1 gives rise to a
2-(n2 +n+1, n+1, 1) design, while the case µ = 1 gives rise to a 2-(n2 +n+1, n2, n(n−1))
design. By lemma 1.11 this is the complement of a 2-(n2 + n+ 1, n+ 1, 1) design.
1.15 Remark. An analogous theorem holds for Hadamard designs:
A symmetric design with order n ≥ 2 and v = 4n− 1 points is a Hadamard design, i.e. a
2-(4n− 1, 2n− 1, n− 1) design, or its complement, i.e. a 2-(4n− 1, 2n, n) design.
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2 Projective Planes
The goal of this thesis is to gain insight into the possible orders of finite projective planes.
This section gives an overview of the definitions and theorems needed. Most results in
this chapter are taken from the book “Projective Planes“ by Hughes and Piper [28] and
the reader is referred there for a broader overview of the theory. The remaining design
theoretic results can be found in chapter 3 of the book “Designs and their Codes“ by
Assmus and Key [2].

2.1 Basic results
There are many equivalent definitions of a projective plane. Here we give one that fits
our purpose and emphasises the connection to design theory.

Definition. Let n ≥ 2 be an integer. A 2-(n2 + n+ 1, n+ 1, 1) design is called a finite
projective plane. The number n is called the order of the plane.

As we view projective planes as designs, we do not need to define terms like isomorphism,
automorphism and dual structure for projective planes because we have already defined
them for designs. This is not a synthetic geometric definition, but it fits our purposes
perfectly. For comparison and historic context we give a more standard definition of a
projective plane and then shortly discuss both definitions.

Definition. A projective plane Π is an incidence structure Π = (P ,L, I) of a non-empty
set P of points and a non-empty set L of lines with P ∩ L = ∅ such that the following
hold:

(1) For any two points p 6= q ∈ P there exists a unique line L ∈ L such that p, q I L.
This line is denoted with L = pq and we say that L joins p and q.

(2) For any two lines L 6= M ∈ G there exists a unique point p ∈ P such that p I L,M .
This point is (in abuse of notation) denoted with p = L ∩M .

(3) There exists a quadrangle, i.e. four distinct points such that no three of those
points are collinear.

The plane Π is called finite if |P| <∞. Points will be denoted with lower case letters
and lines with upper case letters.
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2 Projective Planes

This definition easily handles infinite projective planes, which our design theoretic
definition cannot handle. However, this is not a problem for us since the prime power
conjecture only deals with finite projective planes.
It is easy to show that the two definitions are equivalent. Thus, the class of symmetric
designs with order n ≥ 2 and parameters 2-(n2 + n+ 1, n+ 1, 1) is precisely the class of
finite projective planes in the sense of the geometric definition. This also means that
without loss of generality we can view the lines as sets of points and the incidence relation
I as the membership relation ∈. So for our purposes, a projective plane is just a pair
Π = (P ,L) without explicitly mentioning the incidence relation. Problems with this
approach only arise in cases where the third axiom does not hold, i.e. incidence structures
without a quadrangle.
If we accept the 2-(3, 2, 1) design as a projective plane, then the two definitions do not
agree anymore because the 2-(3, 2, 1) design is not the only incidence structure without a
quadrangle satisfying the first two axioms for a projective plane. One way to obtain such
a degenerate plane is to take n + 1 points with a line containing n of them. Then for
every point on this line add a line containing this point and the point not on the line.
Figure 2.1 illustrates the construction.

Figure 2.1: A degenerate projective plane

This incidence structure satisfies the first two axioms for a projective plane. Any two
distinct points are joined by a unique line and any two distinct lines intersect in a unique
point. However, we see that not all lines have the same number of points, so this is not
a design and the two definitions do not agree anymore. This is because this incidence
structure does not contain a quadrangle, and this is why we only deal with designs of
order n ≥ 2.
Examples of finite (and also infinite) projective planes are the projective planes PG(2, F )
for a field F , called pappian planes. The term “pappian“ is due to the fact that the
projective planes PG(2, F ) are exactly the projective planes where a geometric result
called “Pappus’ Theorem“ is universally valid. However, we do not need the theorem in
this thesis.

2.1 Example. Let F be a field. The projective plane PG(2, F ) is given by:

• The set of points P = {U ⊂ F 3 |U is a 1-dimensional subspace of F 3}

• The set of lines L = {L ⊂ F 3 |L is a 2-dimensional subspace of F 3}
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Any two distinct points U,U ′ ∈ P lie on exactly one line, namely U + U ′, and any two
distinct lines L,L′ ∈ L intersect in exactly one point because of the dimension formula:

dim(L ∩ L′) = dim(L) + dim(L′)− dim(L+ L′) = 2 + 2− 3 = 1

The subspaces generated by the points (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1) form a
quadrangle.
This type of projective plane is finite if and only if F is a finite field. If |F | = q, i.e. F = Fq
for some prime power q, then the projective plane PG(2, F ) is a 2-(q2 + q + 1, q + 1, 1)
design and is usually denoted as PG(2, q). We see that its order is q.

If F is a skewfield, then we can also construct the projective planes PG(2, F ). These
are called the desarguesian planes. Since every finite skewfield is a field, there is no
difference between desarguesian and pappian planes for finite projective planes. As
with pappian planes, the term desarguesian planes comes from a geometric result called
“Desargues’ Theorem“ that is universally valid in PG(2, F ) if F is a skewfield. However,
we do not need this theorem in this thesis. Nonetheless, as the term “desarguesian“
appears in the theory of projective planes quite frequently, we still define it. For our
purposes it is enough to know that the desarguesian planes are the projective planes
PG(2, F ) for a skewfield F .
From the construction above we immediately obtain:

2.2 Theorem. If q = pn is a prime power, then there exists a finite projective plane of
order q.

Proof. If q = pn is a prime power, then the projective plane PG(2, q) has order q.

This is a first indication towards the plausibility of the prime power conjecture. For
every prime power there is a finite field and the size of every finite field is a prime power,
so the order of desarguesian planes is always a prime power. However, not all projective
planes are of this type. In fact, today there are many different projective planes known
and the vast majority are not desarguesian planes.
An important concept in projective geometry is duality. We have already seen in chapter 1
that every design has a dual and that the dual of a symmetric design is again a symmetric
design with the same parameters. Since finite projective planes are symmetric designs,
the dual of a finite projective plane is again a finite projective plane. An important
consequence of this fact is that we get “two theorems for the price of one“: If we know
that a statement about projective planes is true for every projective plane, then the dual
of that statement is also true for every projective plane. We formalise this concept:

Definition. If we have a statement A about projective planes, then the dual statement
A∗ is obtained by interchanging the words “point“ and “line“ and switching the concepts
“lies on“ and “goes through“.

For example, the dual of the statement “Any point lies on at least 3 lines“ is “Any line
goes through at least 3 points“. The projective planes PG(2, q) that we defined above are
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self dual. An isomorphism between PG(2, q) and PG(2, q)∗ is given by taking orthogonal
complements. This converts 1-dimensional subspaces (i.e. points) into 2-dimensional
subspaces (i.e. lines) and vice versa and preserves incidence. So if a theorem is true for
PG(2, q) (that does not have to be true for all projective planes), then its dual is also
true for PG(2, q).
Another important concept is switching between projective and affine planes. As with
projective planes, we define affine planes from the view of design theory.

Definition. Let n ≥ 2 be an integer. A 2-(n2, n, 1) design A = (P ,L) is called a finite
affine plane. The number n is called the order of the plane.

The term “order“ has a slightly different definition for affine planes compared to
projective planes. The order of an affine plane is the number of points on any line, so an
affine plane that is a 2-(n2, n, 1) design is an affine plane of order n while its order as a
design is n− 1 (a projective plane of order n has n+ 1 points on any line and order n as
a design).

2.3 Example. Let F be a field. The affine plane AG(2, F ) is given by:

• The set of points P = F 2

• The set of lines L = {x+ L ⊂ F 2 |x ∈ F 2, L is a 1-dimensional subspace of F 2}

The lines of AG(2, F ) are simply all lines of F 2 and its translates, i.e. all 1-dimensional
affine subspaces of F 2. If F is a finite field with q elements, then AG(2, F ) has q2 points
and every line has q points. Two distinct points a, b ∈ F 2 lie on a unique affine subspace,
namely a+ F (b− a). Thus, AG(2, F ) is an affine plane and is also denoted as AG(2, q).
Its order is q.

Affine planes do not exhibit the same duality as projective planes do, but they are
important to us because of the following two theorems.

2.4 Theorem. Let Π = (P ,L) be a projective plane of order n and L any line of Π.
Then the incidence structure ΠL := (P \L,L \ {L},∈) obtained by removing all points of
L from Π is an affine plane of order n. We will call this the affine residual of Π.

Proof. We know that Π is a 2-(n2 + n+ 1, n+ 1, 1) design and we have to show that ΠL

is a 2-(n2, n, 1) design. Removing the line L removes n+ 1 points, so ΠL has n2 points.
Since Π is symmetric, any two lines intersect in a unique point. Thus, any line other
than L contains exactly one point of L, i.e. any line in ΠL has n points. Finally, any two
distinct points lie on a unique line as this was already true for Π. Thus, Π is a 2-(n2, n, 1)
design, i.e. an affine plane of order n.

We see that a projective plane of order n gives rise to an affine plane of order n. The
converse is also true:

2.5 Theorem. Let A = (P ,L) be an affine plane of order n. Then there exists a
projective plane Π such that A = ΠL for some line L of Π.
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Proof. We use the same construction as in theorem 2.4 but backwards, i.e. we add n+ 1
points to A, add a line containing those n+ 1 points to L and add one point to every
line in an appropriate way.
We know that A is a 2-(n2, n, 1) design. Thus, through a given point p there are

r = λ
v − 1
k − 1 = n2 − 1

n− 1 = n+ 1

lines. Since every line has n points and any two points of A lie on a unique line, it follows
that for every line L and every point p 6∈ L there is a unique line M through p that does
not intersect L. This allows us to decompose the set of lines L into parallel classes, i.e.
sets of pairwise disjoint lines. Every parallel class is a partition of the point set (given a
block, there is a parallel through every point and two distinct parallels cannot intersect
because the parallel through every point is unique). Since there are n+ 1 lines through
any point, there are n+ 1 parallel classes.
We now add n+ 1 points to A and associate every point with a parallel class. Every new
point is added to all lines of its associated parallel class. Finally, we add one line to A that
contains all n+ 1 new points. We claim that this structure Π is a 2-(n2 + n+ 1, n+ 1, 1)
design.
It is immediate that Π has n2 +n+1 points and every line has n+1 points. Now consider
two points p 6= q of Π. If both are points of A, then there is a unique line through p and
q in A and thus by construction a unique line through p and q in Π. If exactly one of
them is one of the new points that were added to A, say q, then there is a unique line
containing both p and q, namely the line of the parallel class associated with q that goes
through p. Finally, if both p and q are new points, then they are on the unique new line
that was added to A. Thus, Π is a 2-(n2 + n+ 1, n+ 1, 1) design, i.e. a projective plane
of order n. By construction we have A = ΠL for the new line L.

This means that there exists a projective plane of order n if and only if there exists
an affine plane of order n. It can be shown that the projective plane in theorem 2.5 is
unique up to isomorphism. This justifies calling it the projective completion of A.
Applying the last two theorems to the projective planes PG(2, q), it is easily seen that
every affine residual of PG(2, q) is isomorphic to AG(2, q). Conversely, the projective
completion of AG(2, q) is PG(2, q).
The last two theorems show that affine and projective planes are closely related and
that we can switch back and forth between them without much effort. We will often
consider them together and work in the structure that is better suited for the context we
are dealing with. If we have an affine plane A and a projective plane Π with A = ΠL,
we will call L the line at infinity of A and we will say that the lines of A intersect the
line at infinity L, even when we consider them as lines in A where the line at infinity
does not exist. Conversely, we will call the points of Π that are not on the line L the
affine points of Π, even if we did not construct Π from an affine plane. As long as we
specify the line L by which the two planes are related, this will not cause any confusion.
It should be noted that removing any line from a projective plane yields an affine plane
but the affine planes obtained by removing different lines need not be isomorphic. This
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is the reason why it is important to clarify which line is to be taken as the line at infinity.
If we start with an affine plane A and then speak of the affine points of its projective
completion Π, they are always to be taken with respect to the line at infinity that was
added to construct Π from A.

2.2 History of the prime power conjecture
In this section we give a short historic overview of the key results on projective planes
regarding the prime power conjecture. History of projective geometry is taken from
the book “Geometry in History“ [12] (especially chapter 6 by Sunada and chapter 8
by Pambuccian and Schacht) and the reader is also referred there for further reading.
More about the history of finite geometries can be found in the well-known book “Finite
Geometries“ by Dembowski [13].

One of the major influences of projective geometry was the art of drawing in perspective.
This goes back to the 15th century with Filippo Brunelleschi (1377 - 1446) named as
the creator of this technique, allowing artists to paint objects and places like one might
actually see them. Projective geometry as a mathematical discipline goes mainly back to
Girard Desargues (1591 - 1661). The well-known “Desargues’ Theorem“ appeared in one
of his books in 1639. At this point in time projective geometry was not concerned with
finite models and was not built upon an axiomatic system like it is today.
In the 19th century some mathematicians, for example Karl von Staudt (1798 - 1867),
started considering finite projective geometries. Von Staudt developed a theory in which
he viewed finitely many points in the real plane [52]. But although projective geometry
had already been studied extensively, it was not until the end of the 19th century that
the axiomatic definition of a projective plane came about. It is attributed to Gino Fano,
one of the founders of finite geometry. In his article from 1892 [19], he considers a set of
points and a set of subsets of that set, called lines, and gives some postulates that those
sets should satisfy. His axioms, stated in a slightly more modern language, were:

1) Any two points lie on exactly one line.

2) Each line is completely determined from any two of its points.

3) Any two lines meet in exactly one point.

4) Each line contains at least three points.

This is very close to our modern definition we gave before. Fano then derives some
properties from these axioms like the number of points of a projective plane, defines
further concepts like the projective harmonic conjugate and also constructs the pro-
jective planes PG(2, p) for a prime number p (in fact, he constructed the projective
spaces PG(k, p) of dimension k for a positive integer k and a prime p). This means
that he proved that there exists a finite projective plane of order p for any prime number p.
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In 1906, Oswald Veblen and William Henry Bussey [55] constructed the projective
planes PG(2, q) for all prime powers q = pn. Since PG(2, q) has order q, this showed that
any prime power can be the order of a finite projective plane. They also gave a system
of axioms for projective geometry and constructed projective spaces of higher dimension.
Using their axiom system they showed that every projective space of dimension k ≥ 3 is
isomorphic to PG(k, q), showing that only the case of dimension 2 gives rise to a wide
variety of different projective geometries. In the case of dimension 2 the plane PG(2, q)
is not the only projective plane of order q. For example, the projective plane of order
2 is unique (up to isomorphism), but there are four non-isomorphic projective planes
of order 9 (see chapter 7). After projective planes with order q for any prime power q
became known, but no one could construct a projective plane with order not a prime
power, it was conjectured that no such planes exist. It seems that this conjecture cannot
be ascribed to a single person, but rather that it arose in the mathematical community
over time.

At the beginning of the 20th century, the smallest open case was whether or not
there exists a projective plane of order 6 because the number 1 cannot be the order of
a (non-degenerate) projective plane by definition and the numbers 2, 3, 4 and 5 are all
prime powers. Nowadays we know that there is no projective plane of order 6. In principle
this was proved by Gaston Tarry in 1901 [53]. He proved that Euler’s “Thirty-Six officers
problem“ had no solution. Euler’s problem is essentially asking whether there is a pair
of orthogonal Latin squares of order 6. We briefly define this term.

Definition. A Latin square of order n is an array of size n × n filled with n different
symbols such that every symbol occurs exactly once in every row and exactly once in
every column. Two Latin squares A and B are called orthogonal if the n2 pairs obtained
by superimposing A on B are all different.

Thus, put another way, Tarry proved that there exist no mutually orthogonal Latin
squares of order 6. His proof essentially consisted of checking every case, i.e. a proof by
exhaustion. However, the connection between mutually orthogonal Latin squares and
finite projective planes was not known until 1938, when Raj Chandra Bose published
an article on the topic [7]. Bose proved that the existence of a set of n − 1 mutually
orthogonal Latin squares is equivalent to the existence of an affine plane of order n (and
thus equivalent to the existence of a projective plane of order n). It can be shown that
for any integer n ≥ 2 there can be no more than n− 1 mutually orthogonal Latin squares,
so a set of n − 1 such squares is called complete. As Tarry proved that there are no
two mutually orthogonal Latin squares of order 6, there surely cannot be a complete set
of mutually orthogonal Latin squares of order 6. Bose’s theorem together with Tarry’s
result proves that there is no projective plane of order 6 and the case n = 6 was thus
settled in 1938.

The next big step regarding projective planes and the prime power conjecture was
the Bruck-Ryser theorem published by Richard Bruck and Herbert Ryser in 1949 [8]. It
was arguably the biggest step towards the prime power conjecture so far and probably
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still is today because it settles the non-existence for infinitely many cases. It states that
if the order n of a projective plane is congruent to 1 or 2 modulo 4, then n is a sum
of two squares. Using this theorem we can immediately rule out values like 14 or 22.
We also get another proof that there exists no finite projective plane of order 6 (which
can be considered “better“ than Tarry’s proof because enumeration by hand is prone to
errors and some cases can easily be overlooked). However, since 10 is the sum of two
squares, the theorem does not help us with the case n = 10. The Bruck-Ryser theorem
was generalised to the Bruck-Ryser-Chowla theorem, which is applicable to arbitrary
symmetric designs, in 1950 [9]. However, this generalisation does not give new constraints
on the order of a projective plane. We will deal with the Bruck-Ryser-Chowla theorem
and its consequences in detail in chapter 5.

After the Bruck-Ryser theorem settled infinitely many cases, there was only one more
case for which the non-existence was proven. It was the next smallest open case, i.e. the
case n = 10. This was done by Clement Lam et al. in 1989. The work of many different
people went into this and we cannot name everybody here. We will only give a very
rough description of the proof. For a more detailed illustration of the proof, the story
behind it and references for the results that went into the proof, the reader is referred to
Lam’s article [31].
The proof that there is no projective plane of order 10 relies on an exhaustive search on
a computer made possible by methods to reduce the size of the search space. The key
idea of the proof was to consider the binary code of a (hypothetical) projective plane
Π of order 10, i.e. the vector space over F2 spanned by the columns of any incidence
matrix of Π (or equivalently the row span since the dual of Π is also a projective plane
of order 10). One important quantity of a codeword (i.e. an element of the code) is its
weight, which is the number of non-zero coordinates it has. Assmus and Mattson showed
that the number of codewords of weight k in the code of a projective plane of order 10 is
uniquely determined by the number of codewords of weight 12, 15 and 16. MacWilliams
et al. showed that there are no codewords of weight 15. The other numbers were later
shown to be equal to zero as well. Thus, it could now be calculated that there would have
to be exactly 24675 codewords of weight 19. The final part was then letting a computer
check all possible configurations showing that there are no codewords of weight 19. This
contradiction shows that there is no projective plane of order 10. A very big amount of
computing time went into the proof. The final program ran for over two years and there
were even some computer errors along the way. After these were dealt with, the project
was eventually finished in 1989.

After that there were no major breakthroughs regarding the prime power conjecture.
The smallest open case today is n = 12. No one has found a projective plane of order
12 or proven that it does not exist. There are some coding theoretic results analogous
to the case n = 10. For example, Hall and Wilkinson considered ternary (i.e. over F3)
and binary codes for a projective plane of order 12 [23]. They showed that the number
of codewords of any weight k in the ternary code can be calculated in terms of twelve
parameters, which is a lot more than in the case n = 10 where three parameters were
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sufficient. Furthermore, the binary code of a projective plane of order 12 is harder to
deal with than the binary code in the case n = 10, so using the same approach as in the
case n = 10 seems very challenging. In theory it is possible to adapt Lam’s method to
the search for a projective plane of order 12. However, the search space is much bigger
and even with faster computers that we have today - 30 years later - it seems infeasible.
It looks like we are still quite far away from proving or disproving the existence of a
projective plane of order 12.

Apart from work on the next smallest case, there are some proofs of special cases of
the prime power conjecture. For example, Blokhuis, Jungnickel and Schmidt showed
that the prime power conjecture holds for finite projective planes of order n that have
an abelian collineation group (which is another word for an automorphism group in the
context of geometry) of order n2 [6]. A similar result was proven by Jungnickel and de
Resmini [30]. They proved the same result but for an abelian collineation group of order
n(n− 1). Other results include the determination of planes that admit a certain group
as a collineation group or the non-existence of planes with a certain collineation group or
with a certain substructure.

In the next chapter we turn to an older special class of projective planes essentially
developed by André in 1954 [1], building on the works of Moufang and Hall. He dealt
with structures called translation planes. Like the newer results mentioned above, it is a
class of projective planes with certain restrictions on the existence of collineation groups.
It turns out that their order is always a prime power.
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In this chapter we will investigate translation planes. We are only interested in finite
translation planes but many results in this chapter hold for infinite planes as well. Our
goal is to prove the following theorem about translation planes, which will be defined
afterwards.

3.1 Theorem. Let Π be a translation plane of order n. Then n is a prime power.

There are many different ways to prove this theorem. We will take one that does not
require much foreknowledge and needs only few preliminary results. As our approach
to projective planes is rooted in design theory, we will prove this theorem from a
combinatorial point of view, avoiding the introduction of coordinates in a suitable
algebraic structure.

3.1 Collineations and collineation groups
The defining property of translation planes is the existence of certain collineations. Before
we can define translation planes, we need to define and study these collineations. The
results in this section are taken from chapter 4 of the book “Projective Planes“ by Hughes
and Piper [28].

Definition. Let Π be a projective plane. An autormorphism of Π is called a collineation.
The group of all collineations of Π is called the full collineation group of Π, denoted
Aut(Π). A subgroup of Aut(Π) is called a collineation group.

It is straightforward to check that Aut(Π) is a group with respect to composition of
functions. In slight abuse of notation we will denote the identity collineation with 1. Our
first goal is to prove the following theorem that gives a very important insight into the
structure of collineations.

3.2 Theorem. Let Π be a finite projective plane and α 6= 1 be a collineation. If α fixes
a line L pointwise, then there exists a point p fixed linewise by α (i.e. α(M) = M for all
lines M through p). Furthermore, α fixes no other point or line.

An easy proof can be given by using closed Baer subsets.

Definition. Let Π = (P ,L) be a projective plane and Π̃ = (P̃ , L̃) be a substructure of
Π (i.e. P̃ ⊆ P and L̃ ⊆ L).
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(a) Π̃ is called closed if it satisfies the first two axioms of the geometric definition of a
projective plane, i.e. any two points are joined by a unique line and any two lines
intersect in a unique point.

(b) Π̃ is called a Baer subset (also called a dense subset) if every point of Π is incident
with a line of Π̃ and every line of Π is incident with a point of Π̃.

The importance of closed Baer subsets to us is due to the following lemma.

3.3 Lemma. Let Π be a projective plane. A closed Baer subset B of Π is either a
subplane of Π or it consists of a line L and all the points on it together with a point p
and all the lines through it.

Proof. If B contains a quadrangle, then B is a projective plane and thus a subplane of Π.
So we can now assume that B does not contain a quadrangle. We consider two cases.
Case 1: B contains a triangle.
Call the points of the triangle a, b, c. Then all points of B must lie on one of the three sides
ab, ac and bc of the triangle because we assumed that B does not contain a quadrangle.
In fact, only one of the sides of the triangle can contain more than two points because if
we had two distinct lines with at least three points on them, then there would exist four
points that form a quadrangle. Without loss of generality let this be the side bc.
Now let q be any point on bc not equal to b or c (exists because any line of a projective
plane contains at least three points) and let L be any line through q not equal to bc or
aq (exists because any point of a projective plane lies on at least three lines). Since B is
a Baer subset, B must contain a point of L. But since L does not contain the point a by
construction, this point must lie on bc as it is the only line that can contain points other
than a, b, c. The intersection of L and bc is the point q that was chosen in the beginning.
Thus, B contains the point q. Since q was an arbitrary point on the line bc, B contains
every point of bc, and since B is closed, it also contains the lines joining a to the points
of bc as well as the line bc itself. As any line through a intersects bc, B contains all lines
through a.
Finally, B cannot contain any other point of Π because every point of B other than a
must lie on the line bc. Similarly, B cannot contain any other line of Π because any line
other than bc and the lines through a would intersect at least one of the sides ab and ac
in a point other than a, b, c. But since B is closed, this point would have to belong to B
too, which cannot be the case. An example visualisation is given in figure 3.1. It has the
same structure as the degenerate projective plane that we constructed as an example in
chapter 2.
Case 2: B does not contain a triangle.
Then all points of B must lie on one line of Π, call this line L. Consider a point p on L
and a line M 6= L through p. Since B is a Baer subset, B must contain a point of M . As
all points of B lie on L, this must be the point L ∩M = p. As p was an arbitrary point
on L, all points of L must belong to B. Since B is closed, the line L also belongs to B.
Now consider a point p not on L. Then B must contain a line M through p. Let the
intersection L ∩M be the point q. Now B cannot contain a line through any point other
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Figure 3.1: A closed Baer subset with a triangle

than q because otherwise the intersection of that line with M would have to belong to B
(since B is closed), but it would not lie on L. Thus, all lines of B go through q. Finally, as
B is a Baer subset, its lines must cover all points of Π. Thus, all lines through q belong
to L. An example visualisation is given in figure 3.2.

Figure 3.2: A closed Baer subset without a triangle

We are now ready to prove theorem 3.2.

Proof of theorem (3.2). Let Fix(α) denote the incidence structure whose points and lines
are the points and lines of Π that are fixed by α, respectively. The idea is to prove that
Fix(α) is a closed Baer subset and then invoke lemma 3.3. First note that since every
line of Π intersects L, every line of Π contains a point of Fix(α).
Let p be any point that does not lie on L.
Case 1: α(p) = p
Then for all points q on L we have α(pq) = α(p)α(q) = pq, as α fixes p by assumption
and q because it lies on L. Thus, α fixes the line pq and p is incident with a line of
Fix(α).
Case 2: α(p) 6= p
Consider the point q = pα(p) ∩ L. Then we have

α(pq) = α(p)α(q) q∈L= α(p)q = pq.
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The last equality is due to the fact that q lies on the line joining p and α(p). Thus, p is
again incident with a line of Fix(α). We have thus shown that Fix(α) is a Baer subset of
Π. It remains to show that Fix(α) is closed.
In case 1 we have already seen that if α fixes p and q, then it fixes the line pq, and thus
pq belongs to Fix(α). Arguing dually, if α fixes the lines M and N , then it fixes the
point M ∩N , and thus M ∩N also belongs to Fix(α). This means that Fix(α) is closed.
Now by lemma 3.3 Fix(α) is either a subplane of Π or a line with all of its points together
with a point and all lines through it. The latter is exactly what we want so the last part
is to prove that Fix(α) cannot be a subplane of Π.
Assume that Fix(α) is a subplane of Π. Then Fix(α) has the same order as Π because
the line L together with all of its points belongs to Fix(α). But since the number of
points of a projective plane is determined by its order, Fix(α) has exactly as many points
as Π, and because Fix(α) is a subplane of Π we must have Fix(α) = Π. This means that
α is the identity. Since α 6= 1 is one of the prerequisites of theorem 3.2, Fix(α) cannot
be a subplane and the theorem is proved.

Theorem 3.2 motivates the following definition.
Definition. Let α be a collineation fixing a point p linewise and a line L pointwise.
Then α is called a (p, L)-perspectivity. The point p is called the centre of α and the line
L is called the axis of α.
If p is on L, then α is called an elation, and if p is not on L, then α is called a homology.
It is immediate that the set of all (p, L)-perspectivities forms a group. The identity

collineation is considered to be both an elation and a homology. We are interested in the
cases where many (p, L)-perspectivities exist.
Definition. A projective plane Π is called (p, L)-transitive if the group of all (p, L)-
perspectivities acts transitively on the non-fixed points of the lines through p (that is
for any line M through p and a, b on M , a, b 6= p and a, b 6∈ L, there exists a (p, L)-
perspectivity sending a to b).
Furthermore, Π is called (L,L)-transitive for a line L if it is (p, L)-transitive for all p on
L. In this case L is called a translation line of Π.
We are now ready to define translation planes.

Definition. A projective plane is called a translation plane if it has a translation line.
An affine plane is called a translation plane if it can be obtained by removing a translation
line from a projective translation plane.
The term “translation plane“ comes from the effect that (p, L)-perspectivities have

on the affine plane A obtained by removing the translation line L. Every point p of L
stands for one parallel class of A. A (p, L)-perspectivity leaves the lines of the parallel
class corresponding to p invariant (as a set). Such collineations are translations in the
usual geometric sense when viewed in the usual field planes. If A is a translation plane,
then for every two points a and b there is a (p, L)-perspectivity mapping a to b (where
p is the point of L that stands for the parallel class of the line ab). In other words the
translations of A act transitively on its points.
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3.4 Remark. Many authors mean an affine translation plane when using the word
“translation plane“. We could also have gone this way by defining affine translation planes
and then define projective translation planes based on that. Translations (apart from the
identity) in affine planes are collineations that fix no point. They correspond to elations
whose axis is the line at infinity. An affine plane is called a translation plane if it has a
group of translations that acts transitively on its points. A projective translation plane
can then be defined as the projective completion of an affine translation plane. Since
we are mainly interested in projective planes, we did not choose this approach. Another
reason is that the proof of theorem 3.7 that we give in this chapter uses projective
planes and elations, not the underlying affine translation plane. However, the affine
definition motivates the name “translation plane“ better and it is convenient to have
both definitions. Sometimes one definition is better suited to a certain construction than
the other.

Note that there is a slight asymmetry between the definitions for a projective and
for an affine translation plane. While the projective completion of an affine translation
plane is a projective translation plane, the residual affine plane of a projective translation
plane is only a translation plane if a translation line is removed. Removing other lines
generally does not yield a translation plane.
As a simple example, we show that the well-known affine planes AG(2, F ) for a skewfield
F are translation planes.

3.5 Example. The planes AG(2, F ) are defined on the vector space F 2. For every
element v ∈ F 2, the mapping

τv : F 2 → F 2, x 7→ x+ v

is a collineation and a translation by the definition of remark 3.4. This is what we would
call a translation in the usual euclidean sense. For any two points p, q ∈ F 2, there exists
a translation τ with τ(p) = q, namely τ = τq−p. All these translation exist, so the group

T (V ) = {τv | v ∈ F 2}

is a group of translations that acts transitively on F 2. So AG(2, F ) is an affine translation
plane. The desarguesian planes PG(2, F ) are thus projective translation planes as they
are the projective completions of the affine translation planes AG(2, F ).

The main tools that we will use to prove theorem 3.1 are collineation groups and their
actions. Thus, we will now take a closer look at sets of (p, L)-perspectivities.

Definition. Let Π be a projective plane and let Γ ≤ Aut(Π) be a collineation group.
For a point p and a line L of Π we define

Γ(p,L) := The set of all (p, L)-perspectivities in Γ,
Γ(L,L) :=

⋃
p∈L

Γ(p,L).
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3.6 Lemma. Let Π be a projective plane and let Γ ≤ Aut(Π) be a collineation group.
Then Γ(p,L) and Γ(L,L) are subgroups of Γ for every choice of a point p and a line L of Π.

Proof. If α, β ∈ Γ are collineations fixing L pointwise and p linewise, then so do αβ and
α−1. Thus, Γ(p,L) is a subgroup of Γ.
For Γ(L,L) we have to show that for α ∈ Γ(a,L) and β ∈ Γ(b,L) with a, b ∈ L, α 6= β, the
collineation α−1β is in Γ(L,L). Since α and β fix L, so does α−1β. Thus, by theorem
3.2 α−1β has a unique centre and we need to show that this centre lies on L. Since we
already know that Γ(p,L) is a group for any p and L, we can assume that a 6= b. In order
to show that the centre of α−1β lies on L, we can show that α−1(β(x)) 6= x for all points
x 6∈ L (note that we have α−1β 6= 1 by assumption).
Let x be a point not on L and assume α−1(β(x)) = x. Then α(x) = β(x). Since a is the
centre of α, the points a, x and α(x) are collinear. Similarly b, x and β(x) are collinear.
But since α(x) = β(x), this means that a and b both lie on the line xα(x). However, this
cannot be the case as this would mean that the line xα(x) intersects L in two distinct
points a and b. Since xα(x) 6= L, this is impossible. Thus, we have α−1β ∈ Γ(L,L). The
proof is visualised in figure 3.3.

Figure 3.3: Proof of lemma 3.6

We can now state and prove the key result that we will use to prove the prime power
conjecture for translation planes.

3.7 Theorem. Let Π be a projective plane and Γ ≤ Aut(Π) be a collineation group. If
Γ(a,L) is non-trivial for two distinct choices of points a on L, then Γ(L,L) is abelian and
all its non-identity elements have the same order (either infinite or a prime).

Proof. We first show that Γ(L,L) is abelian and start by showing that any two elations
with axis L and distinct centres commute. Throughout the proof, we will pick non-trivial
elations for two different points on L. This is possible by the prerequisites of the theorem
and we will not state this every time we consider such collineations.
Let α ∈ Γ(a,L) and β ∈ Γ(b,L) for a, b ∈ L, a 6= b, and α, β 6= 1. Consider the collineation
βαβ−1. By lemma 3.6 it is an element of Γ(L,L), i.e. it is a (p, L)-perspectivity for
some point p ∈ L. Since α fixes all lines throught a, βαβ−1 fixes all lines through β(a).
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Thus, βαβ−1 is a (β(a), L)-elation. But as a is on L, we have β(a) = a, so βαβ−1 is an
(a, L)-elation.
With similar reasoning, α−1β−1α is a (b, L)-elation (note that β−1 is a (b, L)-elation since
β is a (b, L)-elation).
Now consider the collineation α−1β−1αβ. Writing

α−1β−1αβ = α−1︸︷︷︸
∈Γ(a,L)

(β−1αβ)︸ ︷︷ ︸
∈Γ(a,L)

we see that α−1β−1αβ ∈ Γ(a,L). Similarly, writing

α−1β−1αβ = (α−1β−1α)︸ ︷︷ ︸
∈Γ(b,L)

β︸︷︷︸
∈Γ(b,L)

wee see that α−1β−1αβ ∈ Γ(b,L). Thus, we have α−1β−1αβ ∈ Γ(a,L) ∩ Γ(b,L). But since
we have a 6= b and every elation has a unique centre (apart from the identity), we have
Γ(a,L) ∩ Γ(b,L) = {1}. Hence α−1β−1αβ = 1, i.e. αβ = βα.
Now we have to show that two elations with the same centre commute. Let α1, α2 ∈ Γ(a,L)
for some a ∈ L and β ∈ Γ(b,L) for some b ∈ L, a 6= b and α1, α2, β 6= 1. Then by the
argument above α1 and α2 commute with β. We claim that the centre of α2β is different
from the centre of α1. If we show this, it follows that

α1α2β = α1(α2β) = (α2β)α1 = α2(βα1) = α2(α1β) = α2α1β

since we already know that elations with different centres commute. We obtain α1α2β =
α2α1β and cancelling β gives α1α2 = α2α1. Hence Γ(L,L) is abelian.
To complete the proof, we need to show that the centre of the elation αβ, where α ∈ Γ(a,L),
β ∈ Γ(b,L), a 6= b and α, β 6= 1, is different from a and b. First, consider a line M through
b with M 6= L. Then β fixes M , so we have

α(β(M)) = α(M) 6= M

as α fixes exactly the lines through a and M does not go through a. So the centre of αβ
is not b.
Similarly, consider a line M through a with M 6= L. If we had α(β(M)) = M , then we
would have

β(M) = α−1(M) = M

since α fixes M . However, this cannot be the case as β fixes exactly the lines through b
and M does not go through b. Thus, a cannot be the centre of αβ. This completes the
proof that Γ(L,L) is abelian.
Now we prove the second part of the theorem that all non-identity elements of Γ(L,L)
have the same order. We show that if Γ(L,L) has an element of finite order, then all
non-identity elements must have this order. If Γ(L,L) has an element α of finite order,
then it also has an element of prime order (which can be obtained by taking a suitable
power of α). Let γ ∈ Γ(c,L) for some c ∈ L be such an element of order p, p a prime.
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Now consider any non-identity elation δ ∈ Γ(d,L) with c 6= d. Then, as Γ(L,L) is abelian,
we have

(γδ)p = γpδp
γp=1= δp.

As we have seen before, the centre of the product γδ is different from the centre of γ and
δ since c 6= d. Call this centre e. Then we have γδ ∈ Γ(e,L) and thus (γδ)p ∈ Γ(e,L), but
we also have δp ∈ Γ(d,L). Now since d 6= e, it follows that δp ∈ Γ(d,L) ∩ Γ(e,L) = {1}, i.e.
δp = 1. Since p is a prime and δ was not the identity, the order of δ is p.
We have now shown that any non-identity elation with centre d 6= c has order p. The
same argument with another point on L in place of c now shows that every non-identity
element of Γ(L,L) has order p, which completes the proof.

As we do not need the above theorem in its full generality, we record the result we
need in a corollary.

3.8 Corollary. Let Π be a translation plane with translation line L. Then the group
Aut(Π)(L,L) of all elations with axis L is an abelian p-group.

Proof. Since L is a translation line, there are certainly two points a and b on L such that
non-trivial (a, L)- and (b, L)-elations exist (all points of L have this property). Using
theorem 3.7 for Γ = Aut(Π), we obtain that all non-identity elements of Aut(Π)(L,L)
have order p. Thus, the order of Aut(Π)(L,L) must be a prime power pk (if there existed
another prime q dividing the order, then by Cauchy’s theorem there would also exist an
element of order q in Aut(Π)(L,L)).

Using this corollary, we can now give a short proof of theorem 3.1.

3.2 Proof of the main theorem and further results
We can now prove the main theorem of this chapter. We repeat the statement here.

3.1 Theorem. Let Π be a translation plane of order n. Then n is a prime power.

Proof. Let L be a translation line of Π. Consider any point a ∈ L and the group Γ :=
Aut(Π)(a,L) of all (a, L)-elations. By corollary 3.6 Γ is a subgroup of the group Aut(Π)(L,L)
which is a p-group by corollary 3.8. Thus, Γ is a p-group as well, i.e. its order is a prime
power pk.
Now consider any line M 6= L through a. Then by definition of a translation plane, the
group Γ acts transitively on the non-fixed points of M , i.e. all points of M except a.
In fact, Γ acts sharply transitive on M \ {a}. In order to see that consider two points
b, c ∈M , b, c 6= a. Then there exists an elation γ ∈ Γ such that γ(b) = c. Now let δ ∈ Γ
be another elation with δ(b) = c. Then γ−1δ is an element of Γ that satisfies

γ−1(δ(b)) = γ−1(c) = b,

i.e. γ−1δ fixes b. But by lemma 3.2 an (a, L)-elation that is not the identity does not
have any fixed points apart from the points of L. Thus, we have γ−1δ = 1, or in other
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words γ = δ. This shows that Γ acts sharply transitive on M \ {a}.
It is well-known that if a group G acts sharply transitive on a non-empty set X, then
|G| = |X| (choose any point x ∈ X, then the mapping g 7→ g(x) is a bijection from G to
X). Applied to our setting, this means that M \ {a} has exactly as many elements as Γ.
Since the order of Γ is pk, M has exactly pk + 1 elements. By definition of the order of a
projective plane, the order of Π is a prime power.

In the proof of theorem 3.1, we only considered a single point on L and the lines through
it. One could ask why we need a translation line at all and whether (a, L)-transitivity for
a single point a on L is sufficient to obtain the result. But for theorem 3.7, which allowed
us to conclude that Aut(Π)(L,L) is a p-group, we needed that Aut(Π)(a,L) is non-trivial for
two distinct points a on L. Only (a, L)-transitivity for a single point a is not sufficient.
If we have that Aut(Π)(a,L) and Aut(Π)(b,L) are non-trivial for two distinct points a, b on
L, then we can conclude that Aut(Π)(L,L) is a p-group (and thus Aut(Π)(a,L) is a p-group
as well). But if we do not have transitivity, then we cannot conclude that the order of a
line of Π is the same as the order of Aut(Π)(a,L). Trying to require “less“ transitivity in
a projective plane leads to semi-translation planes which we will define in the next chapter.

Many more things can be said about the structure of translation planes, far too much
to be included in this thesis. We give some further results without proof. For proofs and
related results, the reader is referred to the book “Projective Planes“ by Hughes and
Piper [28] and the “Handbook of Finite Translation Planes“ by Johnson, Jha and Biliotti
[29].

3.9 Remark. Let Π be a finite projective plane.

• If Π is (p, L)- and (q, L)-transitive for p, q ∈ L, p 6= q, then L is a translation line
(Theorem 4.19 in [28]).

• If Π has two distinct translation lines, then every line of Π is a translation line
(Theorem 6.18 in [28]). Such planes are called Moufang planes. Finite Moufang
planes are pappian (and thus also desarguesian), so Moufang planes that are not
desarguesian are infinite (see the corollary to theorem 6.20 in [28]).

• There are many different characterisations of translation planes. Some examples
include:
– Every translation plane gives rise to a congruence partition and every congru-

ence partition gives rise to an affine translation plane (and thus a projective
translation plane). There is a one-to-one correspondence between congruence
partitions and translation planes. Similar to congruence partitions, there is
a one-to-one correspondence between translation planes and spreads, which
are essentially congruence partitions in a vector space. See chapter 7 in [28]
and chapter 2 in [29] for more information about the relation between these
structures.
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– Translation planes are exactly the class of projective planes that can be
coordinatised by a quasifield. More information about coordinatisation can
be found in chapter 5 of [28]. The relation between quasifields, spreads and
translation planes is highlighted in chapter 5 of [29].

• All translation planes of order ≤ 49 are known, mostly by computer programs
(section 96.1 in [29]).

• A translation plane of prime order is desarguesian (see excercise 7.14 in [28]).

• At the end of section 2.2, we stated that the order n of a projective plane with
an abelian collineation group of order n2 is a prime power. A translation plane
Π with translation line L has n + 1 points and for every point there are n − 1
non-identity elations. Thus, since distinct centres yield distinct elations, Aut(Π)(L,L)
has (n+ 1)(n− 1) + 1 = n2 elements and is abelian by corollary 3.8. We see that
every translation plane of order n has an abelian collineation group of order n2, so
this theorem can be viewed as a generalisation of theorem 3.1.

• If an affine plane A has a collineation group that acts transitively on the lines of
A, then A is a translation plane (Wagner 1965 [56]). Chapter 14 in [28] deals with
Wagner’s theorem and related results.

• If Π has a collineation group that acts doubly transitively on the points of Π,
then Π is desarguesian (see theorem 14.13 in [28]). This result is known as the
Ostrom-Wagner theorem.

We see that there are a lot of things to investigate regarding translation planes.
However, for our purpose, which is the prime power conjecture, they can be considered
“solved“. Thus, we now turn to projective planes for which the prime power conjecture is
still open, i.e. non-translation planes.
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As we have shown that the prime power conjecture holds for translation planes, it can
be argued that the difficulty of the prime power conjecture comes from non-translation
planes. There are only a few non-translation planes known. This chapter aims to give
an overview of the known non-translation planes. We will elaborate on theorem 105.7
from the book “Handbook of Finite Translation Planes“ from Johnson, Jha and Biliotti
[29]. As this chapter is not meant to give an in-depth view into every of these classes of
projective planes, there will be less proofs and more references to other works.

4.1 Theorem (Theorem 105.7 in [29]). The known finite projective or affine planes that
are not translation planes are included in the following list:

• Dual translation planes

• Semi-translation planes and their duals
(Derived dual translation planes and their duals)

• Planar function planes of Coulter-Matthews

• Hughes planes and irregular Hughes planes

• Ostrom-Rosati planes and their duals
(Derived Hughes planes and their duals)

• Figueroa planes

• The Mathon plane of order 16 and its dual

• The two Moorhouse planes of order 25 (derivates of each other)

As the book was published in 2007, one should specify that these are the translation
planes known at that time. Furthermore, it should be noted that the wording “included
in the following list“ is important as not all dual translation planes are non-translation
planes (take the self dual translation planes PG(2, q) as an example). The same is true
for semi-translation planes.
When working with projective planes, it can be helpful to think of translation planes
with the Lenz-Barlotti classification in mind. This classification divides projective planes
into certain classes depending on how many points p and lines L there are such that
a given plane is (p, L)-transitive. It was first proposed by Lenz in 1954 [34] and later
refined by Barlotti in 1957 [4]. A detailed explanation can be found in section 3.1 in the
book by Dembowski [13] where the reader can also find references and explanations for
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all non-existence results known as of 1968 that are mentioned below without a citation.
For a projective plane Lenz defined what we now call the Lenz figure. If Π is a projective
plane, then its Lenz figure L(Π) is defined as

L(Π) = {(p, L) ∈ P × L | p ∈ L and Π is (p, L)-transitive}.

Lenz then gave seven classes with two of them divided into two subclasses. These were:

I : L(Π) = ∅
II : L(Π) = {(p, L)} for a line L and a point p
III : L(Π) = {(q, pq) ∈ P × L | q ∈ L} for a line L and a point p 6∈ L
IVa : L(Π) = L× {L} for a line L
IVb : L(Π) = {p} × {L ∈ L | p ∈ L} for a point p
V : L(Π) = (L× {L}) ∪ ({p} × {M ∈ L | p ∈M}) for a line L and a point p ∈ L

VIa : L(Π) = {(p,M) ∈ P × L | p ∈ L, M ∈ L} for a line L
VIb : L(Π) = {(q, L) ∈ P × L | q ∈ P , p ∈ L} for a point p
VII : L(Π) = {(p, L) ∈ P × L | p ∈ L}

Every projective plane belongs to exactly one Lenz class. The Lenz classes II to VIb
are visualised in figure 4.1. We recreated the image that appears in Lenz’s article [34].
Dots represent centres and lines represent axes. The dashed line is a line of the projective
plane that is not an axis.
It has been shown that there are no projective planes (neither finite nor infinite) of

classes VIa and VIb. The translation planes that we dealt with in the last chapter
are exactly the projective planes of Lenz class IVa, V or VII. Class VII is the class of
Moufang planes (see remark 3.9). Class IVa is the class of projective planes with a unique
translation line and no other point-line transitivities. The class IVb is dual to class IVa,
i.e. if a projective plane Π is in class IVa, then its dual is in class IVb and vice versa.
Thus, class IVb is the class of the dual translation planes that were mentioned in theorem
4.1. If Π is a projective plane in class IVa, then its dual is a non-translation plane. This
is one way of constructing non-translation planes. For some examples of projective planes
of Lenz class IVa, the reader is referred to section 5.2 in Dembowski’s book [13] which
deals with projective planes of this type. A list of some translation planes such that their
duals are non-translation planes appears in a different context in the article by Coulter
and Matthews [10] which we will take a closer look at later.
The non-translation planes that we are interested in are the projective planes of Lenz
class I, II and III and IVb. It turns out that it makes a huge difference whether a
plane is finite or not. Hering and Kantor [25] showed that there are no finite projective
planes of Lenz class III (but infinite projective planes of Lenz class III are known). As
we are interested in finite projective planes this means that we “only“ have to deal
with projective planes of Lenz class I, II and IVb (or equivalently IVa). However, the
non-existence of (p, L)-perspectivities leads to a less symmetric structure which is harder
to deal with. It should be noted that every Lenz class corresponds to an algebraic
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Figure 4.1: The Lenz classes
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structure, i.e. the projective planes in a Lenz class are exactly the projective planes
that can be coordinatised by a certain algebraic structure. However, since we do not
concern ourselves with coordination in this thesis, we will not go into more detail here.
See theorem 3.1.22 in [13] for more information.
Barlotti refined the Lenz classification by not only considering elations but also homologies.
The Lenz-Barlotti figure is defined as

B(Π) = {(p, L) ∈ P × L | Π is (p, L)-transitive}.

This leads to more possibilities, and thus there are more Lenz-Barlotti classes than
Lenz classes. Every Lenz class is divided into subclasses (apart from class V which
does not split up further by switching from the Lenz figure to the Lenz-Barlotti figure).
For example, a projective plane which is only (p, L)-transitive for a single point p and
a single line L with p 6∈ L is of the same Lenz class as a projective plane that is not
(p, L)-transitive for any choice of p and L but not of the same Lenz-Barlotti class. Thus,
the Lenz-Barlotti class gives more information about a projective plane than the Lenz
class.
In his article from 1957 [4], Barlotti divided Lenz class I into eight subclasses (written as
I.1, ..., I.8). Three of them (I.5, I.7, I.8) have been shown to be empty. Hering and Kantor
showed that there are no finite projective planes of Lenz-Barlotti class I.6. However, it
is not known whether there are infinite projective planes of class I.6. Barlotti divided
Lenz class II into three subclasses, class II.3 was shown to be empty. A proof can also
be found in the article by Hering and Kantor but the result was already known before
(see the article by Spencer [51]). Class III is of no interest to us as there are no finite
projective planes in this class, and class IVa (and thus class IVb) was divided into three
subclasses. All of them contain finite projective planes. Thus, the Lenz-Barlotti classes
that we need to deal with are I.1, I.2, I.3, I.4, II.1, II.2, IVb.1, IVb.2 and IVb.3. We now
give the definitions for these classes. The points p, q, r are arbitrary but non-collinear.

I.1 : B(Π) = ∅
I.2 : B(Π) = {(p, qr)}
I.3 : B(Π) = {(p, qr), (q, rp)}
I.4 : B(Π) = {(p, qr), (q, rp), (r, pq)}
II.1 : B(Π) = {(p, pq)}
II.2 : B(Π) = {(p, pq), (q, pr)}

IVb.1 : B(Π) = {(x, pq) | x ∈ pq}
IVb.2 : B(Π) = {(x, pq) | x ∈ pq} ∪ {(p, L) | q ∈ L} ∪ {(q,M) | p ∈M}
IVb.3 : B(Π) = {(x, L) | x ∈ pq, α(x) ∈ L}

for an involutory and fixed-point free collineation α : pq → pq

We keep this classification in mind when describing the known non-translation planes.

Before we describe the mentioned classes of projective planes in theorem 4.1, we have
to explain what a “derived“ plane is. Simply put, it is a method of constructing new
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planes from a given one. This is best motivated with a theorem about Baer subplanes.
Recall that a Baer subset B is a substructure of a projective plane Π that touches every
element of Π, i.e. every point of Π lies on a line of B and every line of Π goes through a
point of B. If B is a subplane, then it is called a Baer subplane. We need the following
theorem:

4.2 Theorem (Theorem 3.8 in [28]). Let Π be a finite projective plane of order n with a
proper subplane Π0 of order m. Then Π0 is a Baer subplane if and only if n = m2.

The key idea of derivation is to take an affine plane A of order n2 and consider its
projective completion Π such that A = ΠL for some line L. The lines of A have n2

elements. A Baer subplane B of Π has order n and thus n2 + n+ 1 points. If it contains
exactly n+ 1 points of L, then n2 points of B are points of A. By taking some lines of A
and some Baer subplanes of Π, we can construct a new affine plane of order n2. This
process is called derivation. However, before we formalise this process, we have to prove
theorem 4.2. It follows easily from a theorem by Bruck that also has a connection to the
prime power conjecture.

4.3 Theorem (Bruck, Theorem 3.7 in [28]). Let Π be a finite projective plane of order
n with a proper subplane Π0 of order m. Then n = m2 or n ≥ m2 +m.

Proof. Consider a line L of Π0. Since Π0 has order m, the line L contains m+ 1 points
of Π0 and thus n+ 1− (m+ 1) = n−m points of Π \ Π0. Now those n−m points are
different for every line of Π0 since any two lines of Π0 intersect in a point of Π0 . As Π0
has exactly m2 + m + 1 lines, this means that there are exactly (m2 + m + 1)(n−m)
points in Π \Π0 that are incident with a line of Π0. Together with the m2 +m+ 1 points
of Π0, this gives a lower bound on the points of Π. We obtain

n2 + n+ 1 ≥ (m2 +m+ 1)(n−m) +m2 +m+ 1 (∗)
⇐⇒ n2 + n+ 1 ≥ m2(n−m) +mn−m2 + n−m+m2 +m+ 1
⇐⇒ 0 ≥ m2(n−m) +mn− n2

⇐⇒ 0 ≥ (m2 − n)(n−m).

Since Π0 is a proper subplane, we have n > m, so it follows that n ≥ m2.
Note that if we have n = m2, then equality holds in (∗). This means that the points of
Π \ Π0 that are incident with a line of Π0 together with the points of Π0 make up all
points of Π. Every point of Π lies on a line of Π0. The same proof for the dual planes Π∗
and Π∗0 yields that this is also true for them, i.e. every point of Π∗ lies on a line of Π∗0.
Thus, by duality every line of Π goes through a point of Π0.
Now assume that n 6= m2. Then there must exist a point p of Π not incident with any
line of Π0. It follows that no line through p can contain more than one point of Π0
because otherwise the line would belong to Π0. Furthermore, every point of Π0 is on a
line through p (otherwise there would exist two points in Π not joined by a line). Finally,
no two lines through p can go through the same point of Π0 since the lines joining two
distinct points are unique. This means that there are at least as many lines through p as
there are points in Π0. This gives n+ 1 ≥ m2 +m+ 1 or equivalently n ≥ m2 +m.
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Since we saw in the proof above that we have n = m2 if and only if Π0 touches every
element of Π, theorem 4.2 is now a direct corollary of this theorem. Furthermore, there
are no projective planes known where the second case (i.e. n ≥ m2 + m) holds with
equality. This suggests that the bound is not optimal. If there was a projective plane
satisfying n = m2 +m, then this plane would be a counterexample to the prime power
conjecture as m2 +m = m(m+ 1) is never a prime power (because we have m > 1).

Now we are ready to formalise the construction of a derived plane. Definitions and
theorems about derivation that are not ascribed explicitly to an author are taken from
chapter 10 of “Projective Planes“ by Hughes and Piper [28].
Definition. Let A be an affine plane of order n2 and let L be the line of its projective
completion Π such that A = ΠL. A set S of n+ 1 points of L is called a derivation set if
for any two distinct points p, q of A such that the line pq meets L in S there exists a
Baer subplane of Π containing p, q and S.
If A = ΠL is an affine plane of order n2 with derivation set S, then we define the following
incidence structure DS(A):
The points of DS(A) are the points of A
The lines of DS(A) are all sets of the following two types:
1) The lines of A meeting L not in S
2) The sets B \ L for every Baer subplane B of Π that contains S

4.4 Theorem. The incidence structure DS(A) is an affine plane of order n2.
Proof. Since A has order n2, it has n4 points. Every line of DS(A) has n2 points because
it is either a line of A (which has n2 points) or the set of affine points of a Baer subplane
B of Π that contains S. As B is a projective plane of order n by theorem 4.2, it has
n2 + n+ 1 points and every line has n+ 1 points. Thus, if B contains the n+ 1 points of
S, then these are exactly the points from L that are contained in B. So B \L has exactly
n2 points, and thus every line of DS(A) has exactly n2 points.
It remains to show that any two distinct points p, q of DS(A) lie on a unique line. If the
line pq does not intersect L in S, then there is exactly one line in DS(A) containing p
and q, namely the unique line of A joining p and q. A Baer subplane B containing S
cannot contain both p and q as then the intersection of pq with L would have to belong
to B too, which cannot be the case as it does not lie on L. Thus, there is a unique line
of DS(A) joining p and q.
If the line pq intersects L in S, then by definition of a derivation set there exists a Baer
subplane in Π containing p, q and S. We have to show that this Baer subplane is unique.
Let B1 and B2 be Baer subplanes of Π containing p, q and S. Let C = B1 ∩ B2 be the
intersection of these two Baer subplanes. Then C contains p, q and the n+ 1 points of
S. Since n+ 1 ≥ 3, there exist at least two points r and s that are not on the line pq.
Then the points p, q, r, s form a quadrangle. Now C contains a quadrangle and is the
intersection of two subplanes, so C is a subplane as well. As C contains the n+ 1 collinear
points of S the order of C is n. But B1 and B2 are subplanes of order n as well and we
have C ⊆ B1,B2. It follows that C = B1 = B2, i.e. the Baer subplane containing p, q and
S is unique. Thus, DS(A) is a 2-(n4, n2, 1) design, i.e. an affine plane of order n2.
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One important fact about derivation is that multiple derivations with respect to the
same derivation set S do not lead to new planes. However, derivation with respect to
different derivation sets can lead to new planes which can make multiple derivation useful.
We will see some examples later.

4.5 Theorem. Let A be an affine plane with derivation set S. Then DS(DS(A)) is
naturally isomorphic to A.

Proof. See theorem 10.4 in [28].

It should be noted that the order of the derived plane is the same as the order of the
plane we started with. In other words, this construction cannot produce a counterexample
to the prime power conjecture (in case such a counterexample exists). We have the
following theorem regarding the derivation of translation planes.

4.6 Theorem. Let A be a translation plane with a derivation set S. Then DS(A) is a
translation plane.

Proof. See theorem 10.7 in [28].

Since we know by theorem 4.5 that DS(DS(A)) is isomorphic to A, theorem 4.6 implies
that the derivation of a non-translation plane is also a non-translation plane.
In order to obtain a non-translation plane using derivation, we have to derive a non-
translation plane. One option is to take the dual translation planes that we identified as
non-translation planes before (i.e. Lenz class IVb). A list of admissible dual translation
planes appears in the article by Coulter and Matthews [10] that we also mentioned earlier.
However, derivation can be applied to many other projective planes. It can be shown that
some of the known planes are derivates of each other, uncovering a connection between
different classes of projective planes. Deriving dual planes was mentioned in theorem 4.1
in conjunction with semi-translation planes which we will take a look at now.

Semi-translation planes are - as the name suggests - projective planes that have a
property similar to translation planes. As was stated in remark 3.9, we know that a line L
of a projective plane Π is a translation line if Π is (p, L)-transitive for two different points
p ∈ L. Thus, restricting ourselves to fewer points p ∈ L where Π is (p, L)-transitive does
not really work unless we restrict ourselves to a single point-line transitivity which is
not what we want. Another possibility of loosening the requirements for a translation
plane is to not require the group of all (p, L)-perspectivities to act transitively on the
lines through p, but to require that there exist at least some non-trivial elations. This is
the key idea behind semi-translation planes. They are a way of generalising translation
planes. We already mentioned semi-translation planes in the discussion after the proof of
theorem 3.1 where we examined its requirements.
As always, such a class of planes can be defined from the view of affine or projective
geometry. We give the definition from the projective point of view due to Ostrom [46].
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Definition. Let Π be a projective plane of order n2 with n > 2 and L a line of Π. The
plane Π is called a semi-translation plane with respect to the line L if there exists a set
M of n+ 1 points on L such that if p ∈M, then Π has a group Γ of elations with centre
p and axis L with |Γ| = n. If the group of all elations with axis L is of order n2, then Π
is called a strict semi-translation plane.

Note that in the case of a strict semi-translation plane the elations with centre inM
are actually all elations of Π with axis L because every non-identity elation has a unique
centre and there are n− 1 non-identity elations in Γ per point. Thus, in total there are
(n+ 1)(n− 1) + 1 = n2 elation with axis L and centre inM. So strict semi-translation
planes are non-translation planes while semi-translation planes can be translation planes
(since Γ could be a proper subgroup of the group of all (p, L)-perspectivities). We call a
semi-translation plane proper if it is not a translation plane.
Although semi-translation planes are in general not translation planes, they lead to
smaller translation planes in a natural way.

4.7 Theorem (Ostrom 1964). Let Π be a semi-translation plane with respect to the line
L and pointsM on L. Suppose Γ is a group of elations with axis L such that |Γ| = n2

and for each point p ∈ M the subgroup of Γ of elations with centre p has order n. Let
T be an orbit under the action of Γ on points not on L. Then T ∪M is a projective
subplane of Π of order n.

Proof. See lemma 1 in [46].

This theorem gives us a way of interpreting of semi-translation planes. In a translation
plane Π of order n2 with translation line L, the action of the group of all (p, L)-elations
on the points not on L has only one orbit which is the set of all affine points of Π while
in semi-translation planes the orbits are affine subplanes of order n, i.e. affine Baer
subplanes. So although there are multiple orbits, they are as large as they can be since
Baer subplanes are maximal proper subplanes of Π (see theorem 4.6 in [28]). This means
semi-translation planes are non-translation planes that are as close to being translation
planes as possible. Some authors define semi-translation planes as projective planes such
that the orbits of the group of all (p, L)-elation are affine Baer subplanes.
A very important result about the construction of semi-translation planes is the following:

4.8 Theorem (Ostrom 1964). Let A be a derivable affine plane with derivation set S
and L be a line of A that is not a line of DS(A) (i.e. L intersects the line at infinity
in S). If A has a group of translations that acts transitively on the points of L, then
the projective completion of DS(A) is a semi-translation plane with respect to the line at
infinity. Conversely, if DS(A) is a semi-translation plane, there exists such a line in A.

Proof. See section 3 in [46].

This theorem implies that we can use a derivable affine plane to construct semi-
translation planes if its projective completion is (p, L)-transitive for the line at infinity L
and a suitable point p on it (and these are exactly the planes such that their derivation is
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a semi-translation plane by the latter part of the theorem). Of course this is satisfied for a
derivable translation plane, but then the semi-translation plane obtained is a translation
plane as well and at the moment we are not interested in that. One way to obtain a
non-translation plane is to start with a proper translation plane Π with translation line L
(i.e. Lenz class IVa), consider the dual plane Π∗ and then construct a residual affine plane
A = (Π∗)M from Π∗ such that the removed line M contains, as a point L∗, the centre of
the elations of Π∗ (L is the common axis of the elations in Π so L∗ is the common centre
of the elations in Π∗). If L∗ is in the derivation set S, then we are in a situation where we
can apply theorem 4.6 to obtain a non-translation plane. And of course we can dualise
the obtained plane and - if it is not self dual - possibly obtain another non-translation
plane.

Now we give some examples of derivable planes which we can use for the construction
above. We have already mentioned the list of some admissible planes appearing in the
article by Coulter and Matthews [10] multiple times. It can be also shown that the
finite affine planes AG(2, q2) are derivable (see theorem 10.8 in [28]). In this way we
can obtain the André planes and the Hall planes (see theorem 10.12 and the following
corollary in [28]). These are two classes of projective planes that were found by André
(see [1]) and Hall (see [22]), respectively, using coordinate methods. We see that some
classes of projective planes can be viewed as derivations of other well-known planes (here
AG(2, q2)) showing how ubiquitous derivation is. Furthermore, it gives us a different way
to approach them.
Finally, we mention that there also exists “general derivation“. It is essentially a similar
construction using coordinatisation of affine planes of order q2. If the coordinatizing struc-
ture has certain properties, then the affine plane is derivable, giving a rich class of affine
planes to apply derivation to. For some cases it is also easy to say when the derived plane is
a translation plane and when not. See section 4 in chapter 10 of [28] for more information.

We have now explained the two “general“ constructions of non-translation planes of
theorem 4.1 and now turn to the classes of non-translation planes named after their
discoverers. The first on the list are the planes obtained from planar functions by Coulter
and Matthews.

The Coulter-Matthews planes from planar functions were introduced by Coulter and
Matthews in 1997 [10], building on results about planar functions which were defined
by Dembowski and Ostrom in 1968 [15]. Dembowski and Ostrom considered projective
planes Π of order n with a collineation group Γ of order n2 such that the action of the
permutation group induced by Γ on any point or line orbit is regular, or equivalently: if Γ
fixes an element x (either a point or a line), then Γ fixes the whole orbit of x. This is for
example the case if Γ is abelian. Dembowski showed earlier [14] that in this case there
exists a flag (p, L) that is fixed by every collineation in Γ such that Π is (p, L)-transitive
and Γ contains the group of all (p, L)-elations (which has order n). There are now two
possible cases:

(1) Γ consists entirely of elations (with either common axis L or common centre p by
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the above). Then Π is a translation plane or a dual translation plane.

(2) The elations in Γ are precisely those of Π. Then the action of Γ on the points (as
well as on the lines) has three orbits.

While the structure of the projective planes in case (1) is known, it is not clear whether
the projective planes in case (2) are transitive for other flags than the flag (p, L) or not.
Dembowski and Ostrom essentially introduced planar functions to deal with the second
case. At the time of publication of their article, all known examples in case (2) were
translation planes.
We now define planar functions and their associated planes.

Definition (Dembowski & Ostrom [15]). Let G and H be finite groups of order n,
written additively and not necessarily commutative. A function f : G → H is called
planar if the functions λu and µu for u ∈ G, u 6= 0, defined by

λu(x) = f(u+ x)− f(x)
µu(x) = −f(x) + f(x+ u)

are bijections for every u 6= 0.
Given two groups G,H and a function f : G→ H, define an incidence strucure I(G,H; f)
as follows.

• The set of points is the set G×H

• The set of lines is the set of all symbols L(g, h) for g ∈ G, h ∈ H and all symbols
L(g) for g ∈ G

• The incidence relation is defined by

(x, y) I L(g, h) ⇐⇒ y = f(x− g) + h

(x, y) I L(g) ⇐⇒ x = g

Dembowski and Ostrom then proved the following result:

4.9 Theorem (Dembowski & Ostrom [15], Lemma 12). A function f : G → H is a
planar function if and only if I(G,H; f) is an affine plane.

A simple example is the function f : Fq → Fq for odd q with f(x) = x2. This function
is planar and the affine plane I(Fq,Fq; f) is isomorphic to the affine plane AG(2, q).
Dembowski and Ostrom then showed that all projective planes in case (2) with some
further restrictions are exactly the projective planes such that the residual affine plane
ΠL (recall that L is an axis such that Π is (p, L)-transitive) is of the form I(G,H; f), i.e.
it comes from a planar function between some groups G and H (see theorem 5 in [15]).
Furthermore, they found a necessary and sufficient criterion for f such that I(G,H; f) is
a translation plane (see corollary 4 in [15]). They also noted that all planar functions
known at the time come from a certain class of polynomials and asked the question
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whether every planar function is representable that way.
Coulter and Matthews denied that. They defined a class of planar functions (now called
Coulter-Matthews functions) that are not Dembowski-Ostrom polynomials (i.e. planar
functions of the form discussed in the article by Dembowski and Ostrom). It can be
shown that every function f : Fq → Fq must be the evaluation map of some polynomial
over Fq. The planar functions of Coulter and Matthews are thus given in the form of
polynomials.

4.10 Theorem (Coulter & Matthews [10], Theorem 4.1). Let e ∈ N, q = 3e and α ∈ N.
Then the polynomial x(3α+1)/2 is planar over Fq if and only if gcd(α, e) = 1 and α is odd.

The polynomials of the form xp
α+1 were already known to be planar in certain cases

by Dembowski and Ostrom (albeit their theorem on exactly when these polynomials are
planar was not entirely correct). But the polynomials in theorem 4.10 were not studied
by them. We can now state the result that we are interested in.

4.11 Theorem (Coulter & Matthews [10], Theorem 6.2). Let f(x) = x(3α+1)/2 be a
planar polynomial over Fq with q = 3e and suppose that α 6= ±1 mod 2e. Then the affine
plane I(Fq,Fq; f) is not a translation plane.

Coulter and Matthews also showed that the projective completion Π of the affine plane
constructed above is not a dual translation plane. Thus, Π is not in Lenz class IVa
or IVb. Since there are no finite projective planes of Lenz class III and since we know
that planes constructed from planar functions are (p, L)-transitive for at least a single
choice of a point p on a line L, it follows that Π is of Lenz class II. The projective planes
constructed by Coulter and Matthews have order 3e and the planes with odd e were the
first known projective planes of Lenz-Barlotti class II whose order is not a square. This
also implies that these planes cannot be constructed from other planes using derivation
because we can only derive planes whose order is a square. It is interesting to note that
the planes by Coulter and Matthews have a collineation group that acts transitively on
the points of the plane but not all Coulter-Matthews planes are translation planes. More
information about Coulter-Matthews planes like when they are isomorphic and how they
can be coordinatised can be found in the article by Coulter and Matthews [10].

We now turn to the next class of non-translation planes on our list, the Hughes planes.
The Hughes planes were defined by Hughes in 1957 [27]. Their construction relies on
nearfields which we will define now. The following description of Hughes planes is based
on section 6 from chapter 9 of the book by Hughes and Piper [28].

Definition. A (left-)nearfield is a set N together with two binary operations + and ·
satisfying the following axioms:

1) (N,+) is an abelian group.

2) a · (b · c) = (a · b) · c for all a, b, c ∈ N .

3) There is an element 1 ∈ N such that 1 · a = a · 1 = a for all a ∈ N .
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4) For every a ∈ N , a 6= 0, there exists an element a−1 ∈ N such that aa−1 = a−1a = 1.

5) a · (b+ c) = a · c+ b · c for all a, b, c ∈ N .

The centre of N is the set {z ∈ N | zn = nz for all n ∈ N} .

It should be noted that if we replace axioms 2), 3) and 4) by the axiom “(N \ {0}, ·) is
a group“, then there exists an exceptional nearfield in which the multiplication is defined
by x · y = x for all x, y ∈ N . The difference is that axiom 3) requires the element 1 to be
neutral for all elements of N while the axiom “(N \ {0}, ·) is a group“ only requires the
element 1 to be neutral for all non-zero elements of N . As we do not want to deal with
this exceptional structure, we use the axioms 2), 3) and 4).
To construct the Hughes planes H, we need nearfields with p2n elements for an odd prime
p and a positive integer n whose centre is a field with pn elements (i.e. isomorphic to
Fpn). Such nearfields exist for any choice of p and n (see lemma 9.6 in [28]). Now let N
be such a nearfield and set V = N3 and q = pn. The case q = 9 is somewhat exceptional
because the nearfield of order 9 has some additional properties and sometimes needs to
be treated separately. However, the same construction applies.
We essentially want to view V as a 3-dimensional vector space over N , but this is in general
not possible as we do not have distributivity from the right. However, it helps to think of
V that way. Define addition in V by (x1, x2, x3)+(y1, y2, y3) = (x1+y1, x2+y2, x3+y3) and
scalar multiplication from the left with elements of N by k · (x1, x2, x3) = (kx1, kx2, kx3).
The point set of H is essentially the set V \ {(0, 0, 0)}, but we make the identification
(x1, x2, x3) = (kx1, kx2, kx3) for all non-zero elements k ∈ N . If (x1, x2, x3) is a non-zero
element of V , we denote the corresponding point of H as 〈x〉.
Although V is not a vector space over N , we can define the action of linear maps in the
usual way if we restrict ourselves to (3× 3)-matrices whose elements all come from the
centre F of N . Let A = (aij) ∈ GL(3, q) be an invertible (3 × 3)-matrix with entries
from F , then we define the function α : V → V by

α(x1, x2, x3) = (a11x1 + a12x2 + a13x3, a21x1 + a22x2 + a23x3, a31x1 + a32x2 + a33x3).

This is just the usual definition of the matrix-vector product and we will denote this
suggestively as α(x) = Ax. Note that since the entries of A belong to the centre F of N ,
we have

α(k · x) = A(k · x) = k · Ax,

i.e. every bijective linear map A ∈ GL(3, q) induces a well-defined permutation on the
points 〈x〉 of H. The lines of H are defined by starting with some sets of points and then
taking all of their images under a suitable linear map A and all of its powers Am for
non-zero integers m. First, note that for any element t ∈ N and x ∈ V we have

x1 + x2t+ x3 = 0 ⇐⇒ kx1 + (kx2)t+ kx3 = 0

for all non-zero k in N . Thus, the set of all x ∈ V such that x1 + x2t+ x3 = 0 consists of
the point (0, 0, 0) and a set of points 〈x〉 of H. This set of points of H is denoted as L(t).
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The sets L(t) for t = 1 and t ∈ N \ F are our “base“ lines.
Now we need to find a suitable linear map A ∈ GL(3, q). In order to construct a projective
plane, we need exactly as many lines as there are points. We already know the set of
points, it is the set V \ {(0, 0, 0)} in which we identify some elements with each other.
There are q2 elements in N , so there are q6− 1 non-zero elements in V . Every point of H
is a set of q2− 1 points and any such sets are disjoint. Thus, we know that H has exactly

q6 − 1
q2 − 1 = q4 + q2 + 1

points. Furthermore, we have defined q2 − q + 1 “base“ lines L(t). So if we want a linear
map A such that we can take the images of these lines under all of its powers, then A
needs to have order

q4 + q2 + 1
q2 − q + 1 = q2 + q + 1.

In fact, since the points of H are not simply elements of V but we associate all scalar
multiples of a non-zero element x with each other, it suffices that Aq2+q+1 is a scalar
multiple of the identity matrix (but not necessarily the identity matrix itself) and no
smaller power (greater than 0) of A has this property. So q2 + q+ 1 is not necessarily the
order of A, but A has order q2 + q + 1 when viewed as a permutation of the points of H.
It is known that such a matrix A exists in GL(3, q). This is due to Singer [50]. Singer
proved that the projective plane PG(2, q) always has a collineation α of order q2 + q + 1,
i.e. if we start with an arbitrary point x and consider the points x, α(x), α(α(x)), . . . then
we will hit each point exactly once before coming back to the point x that we started
with. Since the points of PG(2, q) are 1-dimensional subspaces of F3

q (see example 2.3)
this collineation α corresponds to a matrix A ∈ GL(3, q) such that Aq2+q+1 is a multiple
of the identity matrix while no smaller power has this property, i.e. exactly what we
need. Now using this matrix A, we are ready to define the lines of H.
The set of lines of H consists of all sets

L(t)Am = {〈Amx〉 | 〈x〉 ∈ L(t)}

for 0 ≤ m ≤ q2 + q and either t = 1 or t ∈ N \ F .

4.12 Theorem. If H is the set of points and lines as defined above with incidence given
by set theoretic inclusion, then H is a finite projective plane of order q2.

Proof. See theorem 9.14 in [28].

4.13 Theorem. A Hughes plane is not (p, L)-transitive for any choice of point p and
line L and is thus neither a translation nor a dual translation plane.

Proof. See corollary 2 to theorem 9.18 in [28].

This means that Hughes planes are of Lenz-Barlotti class I.1. Hughes planes are self
dual and the full collineation group has exactly two point orbits and exactly two line
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orbits (see theorem 5.4.1 in [13]).
The list in Theorem 4.1 also mentions “irregular“ Hughes planes. These come from the
fact that there are exceptional nearfields. All finite nearfields have been classified by
Zassenhaus, see Satz 17 in his article [59] for a complete list. Although the exceptional
nearfields of orders 52 and 72 cannot be used directly for the construction of a Hughes
plane, they have a property which enables a different construction due to Ostrom. He
constructed an associated affine versions of the Hughes planes which can be used to obtain
Hughes planes from the exceptional nearfields of order 52 and 72. Johnson, Jha and
Biliotti call these the irregular Hughes planes in their “Handbook of Finite Translation
Planes“ (see section 100.1 in [29]). They are also called exceptional Hughes planes. Note
that these Hughes planes should not be confused with the regular Hughes planes from the
usual nearfields of order 52 and 72. Finally, we mention that there also exist “generalised
Hughes planes“. Sometimes the terms “Hughes planes“ and “generalised Hughes planes“
are also used interchangeably. The generalised Hughes planes come essentially from the
exceptional nearfields that Hughes did not deal with. See the article by Lüneburg [36]
for their construction and more information.

We have seen that Hughes planes have order q2 for a prime power q. Thus, judging
solely from the order, they are a candidate for derivation. And indeed it was shown that
Hughes planes are derivable. Ostrom used his affine version of the Hughes planes and
applied derivation to construct a new class of projective planes [45]. These planes were
discovered indepently by Rosati [48] who also determined the full collineation group of the
generalised Hughes planes earlier. Thus, they are now called the Ostrom-Rosati-planes.
The Ostrom-Rosati planes were the first known finite projective planes of Lenz-Barlotti
class II.1. See theorems 5.4.4 and 5.4.5 in [13] for more information.

Next on our list are the Figueroa planes. These planes were constructed by Figueroa
[20] by studying the action of the group PSL(3, q) on the projective plane PG(2, q3)
and replacing some of the orbits. Figueroa’s original construction only worked for prime
powers q with q 6≡ 1 mod 3 and q > 2. Later Hering and Schaeffer [24] and Grundhöfer
[21] noticed that the restriction on q can be dropped and every projective plane PG(2, q3)
can be used to construct a Figueroa plane. Here, we give the synthetic construction from
the article by Grundhöfer.
Let Π = (P ,L) be a finite projective plane and let α ∈ Aut(Π) be a collineation of
order 3. If p is a point of Π, there are three possibilities:

1) p is fixed by α.

2) p is not fixed by α and the points p, α(p) and α2(p) are collinear.

3) p is not fixed by α and the points p, α(p) and α2(p) are not collinear.

Similarly, there are three possibilities for a line L of Π, which are dual to the three cases
above:

1) L is fixed by α.

49



4 Non-translation planes

2) L is not fixed by α and the lines L, α(L) and α2(L) are concurrent.

3) L is not fixed by α and the lines L, α(L) and α2(L) are not concurrent.

Thus, the point set P can be decomposed into three subsets P1, P2 and P3 corresponding
to the above three cases. Similarly, we obtain a partition of the line set L into three
subsets L1, L2 and L3. Now we can define an involution µ that interchanges the sets P3
and L3 by

µ(p) = α(p)α2(p) and µ(L) = α(L) ∩ α2(L)
for p ∈ P3 and L ∈ L3. The functions µ maps points to lines and vice versa. Since the
images of µ(p) under α and α2 are the lines α2(p)p and pα(p), respectively, it follows
immediately that µ(p) ∈ L3 for p ∈ P3. Similarly, we have µ(L) ∈ P3 for L ∈ L3. To
show that µ is an involution, let p ∈ P3 and consider

µ(µ(p)) = µ
(
α(p)α2(p)

)
= α

(
α(p)α2(p)

)
∩ α2

(
α(p)α2(p)

)
=
(
α2(p)p

)
∩ (pα(p)) = p.

Similarly, it follows that µ(µ(L)) = L for every L ∈ L3. So µ is bijective and swaps the
roles of the points and lines of P3 and L3. The effect of µ is visualised in figure 4.2. We
can now give the definition of a Figueroa plane.

Figure 4.2: The involution µ

Definition. Let Π = (P ,L, I) be a projective plane (with I = ∈ in our usual setting)
and α be a collineation of Π of order 3. Define the sets Pi and Li for i = 1, 2, 3 as above
and denote with I33 the incidence relation I33 = I ∩ (P3 × L3) that defines the incidence
between the points of P3 and the lines of L3. We define a new incidence structure
Πα := (P ,L, I∗) with

I∗ := (I \ I33) ∪ δ (µ(I33))
where δ(L, p) = (p, L) for all p ∈ P and L ∈ L. In other words: The incidence structure
Πα has the same incidence relation as Π, only the incidence between points of P3 and
lines of L3 is redefined by

p I∗L ⇐⇒ µ(L) I µ(p)
for all p ∈ P3 and L ∈ L3.
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4 Non-translation planes

The incidence structure Πα is not always a projective plane. This depends on the
structure of the projective plane Π that we started with and on the collineation α. As a
first step we have:

4.14 Theorem. Let Π be a pappian projective plane that admits a collineation of order
3. Then Πα is a projective plane.

Proof. See theorem 1 in [21].

But even if we restrict ourselves to the projective planes Π = PG(2, q), the structure
Πα is not always a Figueroa plane. What is missing is a property of the collineation α
that we will define now.

Definition. Let Π be a projective plane and α ∈ Aut(Π) be a collineation. Then α is
called planar if the structure Fix(α) of fixed points and fixed lines is a subplane of Π.

The reason for introducing this term is the following theorem.

4.15 Theorem. Let Π be a pappian projective plane with a collineation α of order 3. If
α is not planar, then Πα is isomorphic to Π.

Proof. See Theorem 3 in [21].

Thus, we need planar collineations to construct new projective planes. We have to
exclude one last special case: The projective plane PG(2, 8) admits a planar collineation
of order 3, but the resulting plane PG(2, 8)α is isomorphic to PG(2, 8). Thus, we have
to exclude it. Now we can state the main result.

4.16 Theorem. Let Π be a pappian projective plane of order greater than 8 with a planar
collineation α of order 3. Then Πα is not desarguesian.

Proof. See theorem 2 in [21].

The projective planes constructed in this way are called the Figueroa planes. We can
construct infinite Figueroa planes by starting with an infinite pappian plane but for our
purposes we will focus on the finite Figueroa planes.
A finite Figueroa plane can be constructed from every projective plane PG(2, q3). The
points of PG(2, q3) are 1-dimensional subspaces of Fq3 . Consider the map α : Fq3 → Fq3

defined by
α(x, y, z) = (xq, yq, zq).

Since q = pk (for some prime p and positive integer k) is a power of the characteristic of
Fq3 , this is a linear map and thus a collineation. Furthermore, we have

α3(x, y, z) = (xq3
, yq

3
, zq

3) = (x, y, z),

so α has order 3. It can be shown that α is planar, so this collineation gives rise to
a Figueroa plane. The fact that the Figueroa planes are not translation planes can
be seen from the structure of their collineation group. The full collineation group is

51



4 Non-translation planes

known both in the finite and in the infinite case. See section 4 in [21] for more information.

The second to last entry in our list of non-translation planes is the Mathon plane
(and its dual). It was constructed by Rudolf Mathon and presented at the conference
“Finite Geometries and Combinatorics“ in Deinze in 1992 [37]. There is surprisingly
little information available on the Mathon plane. The article by Mathon that some
authors refer to seems to never actually have appeared and in the book by Beutelspacher
about the conference of 1992 which features chapters about 35 of the 52 talks there
is no chapter about the talk by Mathon. Furthermore, Gordon Royle’s website about
projective planes of order 16, that is also often cited, is not available any more. However,
a list of all lines and generators of the full collineation group of the Mathon plane and
its dual can be found on the website by Moorhouse about projective planes of order 16
[41]. We have checked using SageMath that this list of lines indeed forms a projective
plane. Furthermore, in the article by Moorhouse about projective planes of order less
than 32 [40], which we will take a closer look at in chapter 7, Moorhouse states that the
Mathon plane was constructed using “net replacement“, so we give a little introduction
into this technique. The following results are taken from an article by Ostrom [47].

Definition. A net is an incidence structure N = (P ,L) where the lines occur in classes
called “parallel classes“ such that the following holds:

(1) Each point belongs to exactly one line of each parallel class.

(2) If L1, L2 ∈ L are lines from different parallel classes, then L1 and L2 intersect in a
unique point.

(3) There are at least three parallel classes and every line contains at least two points.

Nets with only one or two parallel classes are called trivial.
For every net N there exists a positive integer n such that

(1) Each line contains exactly n points.

(2) Each parallel class consists of exactly n lines.

(3) There are exactly n2 points in total.

The integer n is called the order of the net.

We immediately see that affine planes are nets of order n+ 1 and a net can for example
be obtained by deleting some parallel classes from an affine plane. There are further
terms and properties of nets that one could analyse, but we only need the following
definition.

Definition. A net N is called replacable if there exists a net N ′ defined on the same
points such that every two points lie on a common line in N if and only if they lie on a
common line in N ′. The net N ′ is called a replacement of N .
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Now we can define the procedure of net replacement. It is contained in the following
theorem.

4.17 Theorem. Let Π = N1 ∪ . . . Nk ∪M be an affine plane such that N1, . . . , Nk are
replaceable nets while M may or may not be replaceable. Let N ′i be a replacement for Ni

for every i = 1, . . . , k. Then Π′ = N ′1 ∪ . . . N ′k ∪M is an affine plane

Proof. See theorem 3.4 in [47].

Net replacement is similar to derivation that we defined earlier and in fact it is easily
seen that derivation is a special case of net replacement. If A is an affine plane with line
at infinity L, then all lines of a parallel class intersect L in the same point. The union of
all parallel classes whose point at infinity is in the derivation set is a net. This net is
then replaced with the affine residuals of all Baer subplanes that contain the derivation
set. As we have seen in theorem 4.4, any two such affine residuals intersect in either zero
points or in one point. Thus, the maximal sets of pairwise disjoint affine Baer subplanes
form a parallel class and their union is a net. So net replacement is a generalisation of
derivation. For more information on net replacement the reader is referred to the article
by Ostrom [47].

Finally, we come to the last finite non-translation planes of theorem 4.1. These are the
two Moorhouse planes. Called “Wyoming planes“ by Moorhouse, they were constructed
by a method called “lifting quotients“ which we will explain now.
If we have a projective plane Π and a collineation α of Π of order two, then we can
build a new incidence structure Σ = Π/α where the points and lines are the orbits of
length two under α, i.e. sets {p, α(p)} and {L, α(L)}, respectively. It can be shown that
the plane Π can be recovered from the orbits of length two only, so we can disregard
the fixed points and lines. Incidence in Σ is defined naturally: the point {p, α(p)} lies
on {L, α(L)} if and only if p ∈ L or p ∈ α(L). Now since Π is a projective plane, the
incidence structure Σ has some certain special properties, and we call a structure with
these properties a semibiplane. See the article by Moorhouse about semibiplanes [43] for
more information.
The method of lifting quotients now tries to reverse the construction above: given a
semibiplane Σ, can we find a projective plane Π with a collineation α of order two such
that Π/α is isomorphic to Σ?
Moorhouse gives a list of known projective planes that can be obtained by lifting quotients.
The two Moorhouse planes are the first planes obtained by this method that were not
known before. They are of Lenz-Barlotti class II.1 and I.1 and thus not translation planes.
For the algorithm, the computer programs used and further information see section 3 in
the article by Moorhouse [40].

We have now described all known classes of finite non-translation planes. The order
of all of these planes is a prime power. However, this is mainly due to the fact that
most of these planes are constructed from other known ones without changing the order.
Since the order of all known finite projective planes is a prime power, the order of the
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constructed planes is a prime power as well. In fact, from the list of theorem 4.1, only the
planar function planes and the Hughes planes are not constructed as the modification of
an existing plane. All other projective planes mentioned in theorem 4.1 are constructed
by starting with a known projective plane and altering the incidence relation (derivation,
net replacement) or by trying to make a known structure bigger (lifting).

After all these results about the existence of certain projective planes, we now turn to
a well-known non-existence result - the Bruck-Ryser-Chowla theorem.
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5 The Bruck-Ryser-Chowla theorem
In this chapter we will state and prove the Bruck-Ryser-Chowla theorem. It gives
necessary conditions for the existence of a symmetric 2-(v, k, λ) design. The Bruck-Ryser-
Chowla theorem is a generalisation of the Bruck-Ryser theorem, which we will obtain as
a corollary. We can use it to exclude possible orders of finite projective planes.

5.1 Theorem (Chowla & Ryser [9]). Suppose a symmetric 2-(v, k, λ) design exists. Then
the following holds:

(1) If v is even, then k − λ is a square in N.

(2) If v is odd, then the equation

x2 = ny2 + (−1) v−1
2 λz2

has an integer solution (x, y, z) 6= (0, 0, 0).

This theorem is called the Bruck-Ryser-Chowla theorem. To prove it, we need the
following well-known results. They are taken from the book “Topics in Number Theory
Volume 1“ by LeVeque [35].

5.2 Lemma (Lagrange’s 4-square theorem). Every positive integer is the sum of at most
four integer squares.

Proof. See theorem 7-9 in [35].

The following result is sometimes called “Euler’s 4-square theorem“ and can easily be
verified by straightforward algebraic manipulations.

5.3 Lemma. Let a, b, c, d, x1, x2, x3, x4 be integers. Then we have

(a2 + b2 + c2 + d2)(x2
1 + x2

2 + x2
3 + x2

4)
= (ax1 + bx2 + cx3 + dx4)2 + (−bx1 + ax2 − dx3 + cx4)2

+ (−cx1 + dx2 + ax3 − bx4)2 + (−dx1 − cx2 + bx3 + ax4)2.

A product of two sums of four squares is thus again a sum of four squares. Furthermore,
if we call the sums in the brackets on the right hand side y1, y2, y3, y4, then they are given
bilinearly in terms of a, b, c, d and x1, x2, x3, x4 by

y1
y2
y3
y4

 =


a b c d
−b a −d c
−c d a −b
−d −c b a



x1
x2
x3
x4

 .
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Now we are ready to prove the Bruck-Ryser-Chowla theorem.

Proof of Theorem 5.1. We essentially give the proof that Ryser and Chowla gave in their
original article [9].
(1): By lemma 1.7b, any incidence matrix A of D satisfies

(det(A))2 = det(AAT ) = rknv−1 = k2(k − λ)v−1.

Since the left side is an integer square and v is even, n = k − λ is an integer square.
(2): Let x ∈ Qn and A be an incidence matrix of D. The idea of this proof is to interpret
A as a quadratic form and then make the resulting sum of squares smaller to obtain the
desired equation.
By lemma 1.7a we have the identity

xAATxT = x(nI + λJ)xT = nxxT + λxJxT .

Let z = xA to obtain
zzT = nxxT + λxJxT .

This gives us the identity

z2
1 + . . .+ z2

v = n(x2
1 + . . .+ x2

v) + λs2 (∗)

for some number s = x1 + . . .+ xk ∈ Q.
First, we want to eliminate the factor n as much as possible. By lemma 5.2 n is a sum of
four integer squares. Write

n = a2 + b2 + c2 + d2,

then n(x2
1 + x2

2 + x2
3 + x2

4) = (a2 + b2 + c2 + d2)(x2
1 + x2

2 + x2
3 + x2

4) is again a sum of four
squares by lemma 5.3. This lemma also gives us the matrix

S =


a b c d
−b a −d c
−c d a −b
−d −c b a

 ,
which satisfies

SST = (a2 + b2 + c2 + d2)I4 = nI4.

Thus, we have
xSSTxT = n(x2

1 + x2
2 + x2

3 + x2
4).

Case 1: v ≡ 1 mod 4
Group the sum nx2

1 + . . . + nx2
v in equation (∗) into sums of four squares with x2

v left
over and use the above result for each group. More explicitly, set

T =


S 0 . . . 0
0 . . . . . . ...
... . . . S 0
0 . . . 0 1



56



5 The Bruck-Ryser-Chowla theorem

and set y = xT to obtain

y2
1 + . . .+ y2

v = yyT = xTT TxT = nx2
1 + . . .+ nx2

v−1 + x2
v.

Plugging this into equation (∗) leaves us with (note that xv = yv)

z2
1 + . . .+ z2

v = y2
1 + . . .+ y2

v−1 + ny2
v + λs2 (∗∗)

for some (possibly different) number s, and z given in terms of y because we have
z = xA = y(T−1A).
We now want to reduce the sum. This is done by picking a value for y1 such that y2

1 = z2
1 ,

then picking a value for y2 such that y2
2 = z2

2 and so on. We will later refer to this step
as Bruck-Ryser-Chowla elimination.
We have z = yC for some rational matrix C = T−1A, or more explicitly for the first
coordinate

z1 = c11y1 + . . .+ cv1yv.

We want y2
1 = z2

1 , so we need y1 = ±z1. If c11 6= 1, we can achieve y1 = z1 by considering

y1 = z1 = c11y1 + . . .+ cv1yv ⇐⇒ y1 = 1
1− c11

(c21y2 + . . .+ cv1yv).

If c11 = 1, we can achieve y1 = −z1 by considering

−y1 = z1 = c11y1 + . . .+ cv1yv ⇐⇒ y1 = 1
−1− c11

(c21y2 + . . .+ cv1yv).

Thus, we can always pick a value for y1 depending on y2, . . . , yv such that y1 = ±z1.
Substituting a suitable value for y1 in equation (∗∗) leaves us with the equation

z2
2 + . . .+ z2

v = y2
2 + . . .+ y2

v−1 + ny2
v + λs2,

where y1 does not show up anymore. The number s now depends on y2, . . . , yv. But the
exact value does not matter to us, so we will keep denoting it with s.
Since y1 was chosen linearly depending on y2, . . . , yv, the values z2, . . . , zv are now given
as rational linear combinations of y2, . . . , yv. This means that we can now iterate the
process, i.e. we can choose a value for y2 depending linearly on y3, . . . , yv such that
y2

2 = z2
2 , and thus obtain an equation where neither y1 nor y2 shows up. We can do this

elimination as long as there exist at least two values yk not chosen yet. Thus, the last
step is picking yv−1 as a rational multiple of yv such that y2

v−1 = z2
v−1. After the last

elimination we are left with the equation

z2
v = ny2

v + λs2.

Now let yv be any non-zero rational number. Then the value of yv−1 is fixed as it was
chosen as a multiple of yv. Now the value of yv−2 is fixed as it was chosen as a rational
combination of yv−1 and yv. Continuing this way we obtain values for every yk and based
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on that values for the zk and for s such that equation (∗∗) holds. This means that there
also exists a rational solution to the equation

z2
v = ny2

v + λs2

with yv 6= 0. By renaming the variables and multiplying with a suitable integer, we
obtain that the equation

x2 = ny2 + λz2

has an integer solution with (x, y, z) 6= (0, 0, 0). Since we assumed v ≡ 1 mod 4, this is
exactly the desired equation.
Case 2: v ≡ 3 mod 4
Let xv+1 denote a new variable and add nx2

v+1 to both sides of equation (∗) to obtain

z2
1 + . . .+ z2

v + nx2
v+1 = n(x2

1 + . . .+ x2
v+1) + λs2. (∗ ∗ ∗)

Now we can proceed like we did in case 1. Group the sum nx2
1 + . . .+ nx2

v+1 into sums
of four squares. This time there is no variable left over. Consider the matrix

T =


S 0 . . . 0
0 . . . . . . ...
... . . . . . . 0
0 . . . 0 S


and set y = xT to obtain

y2
1 + . . .+ y2

v+1 = nx2
1 + . . .+ nx2

v+1.

Plugging this into equation (∗ ∗ ∗) leaves us with

z2
1 + . . .+ z2

v + nx2
v+1 = y2

1 + . . .+ y2
v+1 + λs2.

Now we can use Bruck-Ryser-Chowla elimination again. Note that the appearance of
the new variable xv+1 in this equation does not the change the fact that all variables on
the left side of the equation are linear combinations of the yk. The elimination leaves us
with the equation

nx2
v+1 = y2

v+1 + λs2.

This time, by renaming the variables and multiplying with a suitable integer, we obtain
that the equation

x2 = ny2 − λz2

has an integer solution with (x, y, z) 6= (0, 0, 0). Since this is the desired equation in the
case v ≡ 3 mod 4, this completes the proof.

We can now obtain the Bruck-Ryser theorem as a corollary of the Bruck-Ryser-Chowla
theorem. Before that we give two lemmas that will be needed in the proof, again taken
from the book by LeVeque [35].
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5.4 Lemma. Let p be a prime number. Then −1 is a square modulo p if and only if
p = 2 or p ≡ 1 mod 4.

Proof. See theorem 5-3 in [35].

5.5 Lemma. Let n ∈ N be an integer. Then n is a sum of two squares if and only if the
square-free part of n has no prime divisors p ≡ 3 mod 4.

Proof. See theorem 7-3 in [35].

5.6 Theorem (Bruck & Ryser [8]). If there exists a projective plane of order n and
n ≡ 1 mod 4 or n ≡ 2 mod 4, then n is a sum of two squares in N.

Proof. We essentially give the proof that Ryser and Chowla gave in their article in which
they proved the Bruck-Ryser-Chowla theorem [9].
A finite projective plane is a 2-(n2 +n+1, n+1, 1) design. If n ≡ 1 mod 4 or n ≡ 2 mod 4,
then v ≡ 3 mod 4. We obtain from the Bruck-Ryser-Chowla theorem that there exist
x, y, z ∈ Z not all zero with

x2 = ny2 − z2.

Let p be a prime dividing the square-free part of n (if no such p exists, then n is a square
and so it is also a sum of two squares). Then the above equation can be rewritten as

x2 = pty2 − z2 (∗)

with t ∈ N not divisible by p (and possibly different y). Note that z cannot be zero
(otherwise n is a square or x = y = z = 0). Without loss of generality we can assume
that neither x nor z are divisible by p. If one of them is divisible by p, the other has
to be too, because we have x2 ≡ z2 mod p. But then pty2 has to be divisible by p2, and
because t is not divisible by p, y must be divisible by p. Thus, we can divide x, y and z
by p until we get a solution with p not dividing x and z. Reducing equation (∗) modulo
p gives

x2 ≡ −z2 ⇐⇒ (xz−1)2 ≡ −1,
so −1 is a square modulo p. By lemma 5.4, we have p = 2 or p ≡ 1 mod 4. In other
words, the square-free part of n cannot have a prime divisor equal to 3 mod 4. By lemma
5.5 n is the sum of two integer squares.

The smallest numbers ruled out by the Bruck-Ryser theorem are 6, 14, 21, 22 and 30.
For a list of ruled out values see entry A046712 in the On-Line Encyclopedia of Integer
Sequences [44].
The smallest values for which this theorem applies but cannot rule out the existence of a
projective plane are 10 and 12. As it was shown that there exists no finite projective
plane of order 10, the Bruck-Ryser-Chowla theorem gives necessary but not sufficient
conditions for the existence of a finite projective plane.
The Bruck-Ryser-Chowla theorem can be applied to symmetric designs with λ > 1 for
which the Bruck-Ryser theorem does not help us. As an example we take a look at the
Hadamard designs.
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5.7 Example. The Hadamard designs are symmetric 2-(4n− 1, 2n− 1, n− 1) designs
of order n. Using the Bruck-Ryser-Chowla theorem we obtain that the equation

x2 = ny2 − (n− 1)z2

has a non-trivial integer solution. Since x = y = z = 1 is a solution for any n, the
Bruck-Ryser-Chowla theorem does not help us with the existence of Hadamard designs.

We also give an example where the Bruck-Ryser-Chowla theorem yields strong results.
It is taken from the book “Einführung in die endliche Geometrie I“ by Beutelspacher [5].

5.8 Example. There are no projective planes of order n ≡ 6 mod 8.
This is because n ≡ 6 mod 8 implies n ≡ 2 mod 4, and thus by the Bruck-Ryser theorem
n would have to be the sum of two squares. However, the squares modulo 8 are 0, 1 and
4 and the sum of two of those values is never 6. So there cannot be a projective plane of
order n ≡ 6 mod 8.

We close this chapter by giving a different formulation of the Bruck-Ryser-Chowla
theorem which is usually easier to apply in practice. The following is taken from chapter
2 of the book “Symmetric Designs“ by Lander [33].
The equations coming from the Bruck-Ryser-Chowla theorem are of the form

x2 = ay2 + bz2,

and we want to know whether they are solvable for given integers a and b. We consider
the slightly more general equation

ax2 + by2 + cz2 = 0 (∗)

for given integers a, b, c and we are looking for a non-zero integer solution. Without loss
of generality we can assume that a, b and c are square-free. If one of the coefficients, say
a, can be written as a = ãs2 for some integer s 6= 0,±1, then we have

ax2 + by2 + cz2 = ã(sx)2 + by2 + cz2,

so we can also consider the equation

ãx2 + by2 + cz2 = 0.

This equation has a non-zero solution if and only if equation (∗) has a non-zero solution
because the solutions only differ by a factor of s in the first component.
We can also assume that a, b and c are pairwise relatively prime. If two coefficients, say
a and b, had a common prime factor p, then the summand cz2 must be divisible by p as
well. If c is divisible by p, we can divide the whole equation by p. If z2 is divisible by p,
it is also divisible by p2 and we can equivalently consider the equation

a

p
x2 + b

p
y2 + pcz2 = 0.
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We can iterate this process for every common factor until all coefficients are pairwise
relatively prime.
Now we argue exactly like in the proof of the Bruck-Ryser theorem. If p is an odd prime
dividing one of the coefficients, say a, then we can reduce the equation modulo p to
obtain

by2 + cz2 = 0 mod p ⇐⇒ by2 = −cz2.

Since b and c are not divisible by p by assumption, it follows that −bc is a square modulo
p.
We can do the same for prime factors of b and c, so we also obtain that −ac is a square
modulo p for every odd prime p dividing b, and −ab is a square modulo p for every odd
prime p dividing c. Note that we do not have to consider the factor 2 because at most one
of the coefficients is divisible by 2 (as the coefficients are relatively prime) and reducing
the equation modulo 2 just gives either x2 + y2 = 0 or x2 + y2 + z2 = 0, both of which
are always solvable modulo 2. So reducing the equation modulo 2 gives us no restrictions
on the coefficients. Finally, if all coefficients are positive or all coefficients are negative,
there cannot exist a non-trivial integer solution. So the four conditions

(1) If an odd prime p divides a, then −bc is a square modulo p.

(2) If an odd prime p divides b, then −ac is a square modulo p.

(3) If an odd prime p divides c, then −ab is a square modulo p.

(4) Not all coefficients have the same sign.

are necessary for the existence of a non-zero solution to the equation (∗). The important
result now is a theorem by Legendre. These four conditions are not only necessary
but also sufficient for the existence of a non-trivial integer solution. We will refer to
this as Legendre’s theorem. Using this insight we can give an alternative version of the
Bruck-Ryser-Chowla theorem.

5.9 Theorem. Suppose a symmetric 2-(v, k, λ) design exists. Let n∗ and λ∗ denote the
square-free part of n = k − λ and λ, respectively. Then the following hold for every odd
prime p:

(1) If p 6 | n∗ and p | λ∗, then n is a square modulo p.

(2) If p | n∗ and p 6 | λ∗, then (−1) v−1
2 λ∗ is a square modulo p.

(3) If p | n∗ and p | λ∗, then (−1) v+1
2 · (λ∗/p) · (n∗/p) is a square modulo p.

Proof. The equation obtained from the Bruck-Ryser-Chowla theorem is

x2 = ny2 + (−1) v−1
2 λz2 ⇐⇒ −x2 + ny2 + (−1) v−1

2 λz2 = 0.
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5 The Bruck-Ryser-Chowla theorem

It is clear that not all coefficients have the same sign. (1) and (2) follow directly from
Legendre’s theorem (we have a = −1, b = n∗ and c = (−1) v−1

2 λ∗).
If p | n∗ and p | λ∗, then we rewrite the equation as shown before to

−px2 + n∗

p
y2 + (−1) v−1

2 λ∗

p
z2 = 0.

Now we can apply Legendre’s theorem to obtain that

−n
∗

p
· (−1) v−1

2 λ∗

p
= (−1) v+1

2 · n
∗

p
· λ
∗

p

is a square modulo p.

Using this theorem we can give a short proof of the Bruck-Ryser theorem: If Π is a
projective plane of order n with n ≡ 1 mod 4 or n ≡ 2 mod 4, we have v ≡ 3 mod 4,
λ∗ = 1 and for every prime p dividing n∗, −1 is a square modulo p. From lemmas 5.4
and 5.5 it follows that n must be a sum of two squares.
We will make extensive use of this theorem in the next chapter to quickly determine
which equations obtained from the Bruck-Ryser-Chowla theorem are solvable and which
are not.
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6 An approach using bordered matrices
In 2017 Mingchun Xu wrote an article [58] in which he proposed a generalisation of the
Bruck-Ryser-Chowla theorem, but his proof was incorrect. In this chapter we describe
his approach, give a counterexample to his theorem, explain where his proof fails and
assess whether the approach can be altered to yield correct results. It appears that Xu
is aware of his mistake as he wrote in a later article from 2019 [57] that the question
whether there exists a finite projective plane of order 12 is still not solved, although he
claimed to have solved this problem in his article from 2017.
Recall that by lemma 1.7 every incidence matrix A of a 2-(v, k, λ) design satisfies

AAT = (r − λ)Iv + λJv.

6.1 Rectangular bordered matrices
The key idea of Xu’s article from 2017 was the following: Assume a symmetric 2-(v, k, λ)
design exists and take any incidence matrix A of it. Add some rows and columns to A to
obtain a rectangular matrix C ∈ Qw×w+d for some integer d ≥ 1 with

CCT = aIw + bJw

for positive integers a and b. Xu tried to show that there are certain restrictions on a
and b depending on w and d. If they are not met, then the assumption that a 2-(v, k, λ)
design exists must be false.

Definition. Let A be an incidence matrix of a symmetric design. If C is a (w × w + d)-
matrix (d ≥ 1) obtained by adding rational rows and columns to A such that

CCT = aIw + bJw

for some positive integers a and b, then C is called a (rectangular) bordered matrix of A.

6.1 Remark. A matrix C in the situation above must necessarily be of rank w, i.e. full
rank.

Xu dealt with the cases d = 1 and d = 2 and distinguished between w ≡ 0, 1, 2, 3 mod 4,
giving 8 cases in total. As the attempted proofs for each case are all built (and thus fail)
in the same way, we only state the claim for the case d = 1 and w ≡ 0 mod 4 and then
give a counterexample.
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6 An approach using bordered matrices

6.2 Claim. Let C be a rational (w × w + 1)-matrix with no constant column and

CCT = aIw + bJw

for some positive integers a and b. If w ≡ 0 mod 4, then b is a square.

6.3 Counterxample. Consider a 2-(3, 2, 1) design. A possible incidence matrix is given
by

A =

0 1 1
1 0 1
1 1 0

 .
We now build the following (4× 5) bordered matrix:

C =


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0

1/4 1/4 1/4 3/2 3/4


This matrix satisfies

CCT = I8 + 2J8,

but 2 is not a square. Claim 6.2 does thus not hold.

Xu’s proof attempt for claim 6.2 relies on the Bruck-Ryser-Chowla elimination (see
theorem 5.1). However, Xu applied this in a situation where the needed conditions
are not met. More explicitly, the equation obtained by using the Bruck-Ryser-Chowla
approach for the matrix C from the above counterexample is

y2
1 + y2

2 + y2
3 + y2

4 + y2
5 = x2

1 + x2
2 + x2

3 + x2
4 + 2z2 (∗)

with (x1, x2, x3, x4) ∈ Q4, y = xC and z = x1 + x2 + x3 + x4. Using Bruck-Ryser-Chowla
elimination this can be reduced to

y2
4 + y2

5 = x2
4 + 2z̃ 2.

In this situation the same elimination procedure cannot be applied because there is only
one variable left. We cannot pick a value for x4 in terms of the remaining variables as there
are none. Picking x4 = 0 yields only the trivial solution x = (0, 0, 0, 0), y = (0, 0, 0, 0, 0)
and z = 0.
Xu’s solution to that problem was not to pick values for the xi but to pick values for the
yi. As C is of full rank, the linear map L : x 7→ xC is an isomorphism onto its image. If
we restrict the equation (∗) to values y ∈ im(L), we could pick values for the yi and do
a similar elimination because the xi are given as rational linear combinations of the yi.
But this does not solve the problem. We would arrive at the same equation as by using
the usual elimination and would (in general) be unable to pick a value for the remaining
variables. However, Xu reduced the equation one more time to obtain his desired result.
This was the flaw in his proof.
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In our example above we cannot choose y4 in terms of y5 such that we have y2
4 = x2

4 and
(y1, y2, y3, y4, y5) ∈ im(C) because we are restricted in two ways: We need to pick y4 in
terms of y5 such that (y1, y2, y3, y4, y5) ∈ im(C), but we also need to pick y4 in terms of
y5 such that y4 = ±x4. These two restrictions might be fulfillable simultaneously, but
in general they are not. Note that any four columns of C are linearly independent, so
any choice for four of the variables leads to exactly one value for the remaining variable
such that (y1, y2, y3, y4, y5) ∈ im(L). If that was not the case, we would be even more
restricted in our choice of the values. Furthermore, note that the equation obtained if we
could achieve y2

4 = x2
4 has no non-trivial integer solution (as 2 is not a square), while the

equation (∗) has a solution with x4 6= 0 (for example x4 = 1, z̃ = 2, y4 = 3, y5 = 0).

6.2 Square bordered matrices
The problem with the approach using rectangular bordered matrices was that the
Bruck-Ryser-Chowla theorem only deals with square matrices and does not generalise to
rectangular matrices. However, one could try to find a square bordered matrix and then
use the Bruck-Ryser-Chowla theorem on it. Xu proposed this in his article from 2019
[57]. In this section we investigate this approach.

Definition. Let A be an incidence matrix of a symmetric design. If C is a rational
(w × w)-matrix obtained by adding rational rows and columns to A such that

CCT = aIw + bJw

for some positive integers a and b, then C is called a (square) bordered matrix of A.

When working with bordered matrices, one needs to be very careful because some
theorems that hold for incidence matrices of symmetric designs do not hold any more
for bordered matrices. In particular, the first part of the Bruck-Ryser-Chowla theorem,
i.e. that n is a square if v is even, is in general false if v, k and λ are only defined by
a rational (v × v)-matrix A with AAT = (k − λ)Iv + λJv, but A is not the incidence
matrix of a design. This is because the crucial step in the proof of lemma 1.7 about the
determinant of an incidence matrix, i.e.

det(AAT ) =
(
r + λ(v − 1)

)
(r − λ)v−1 = rknv−1,

relies upon the fact that we have λ(v − 1) = r(k − 1) for 2-designs. Otherwise we cannot
deduce that we have

det(A)2 = k2nv−1

for symmetric designs, which we need so that n must be a square for even v. Thus, we
cannot use the first part of the Bruck-Ryser-Chowla theorem for bordered matrices. The
following example illustrates the problem:
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6.4 Example. Consider the symmetric 2-(7, 3, 1) design. An incidence matrix can easily
obtained by taking all cyclic permutations of the vector (1, 0, 1, 1, 0, 0, 0) as the columns
of a matrix. We add one column and one row to obtain the following bordered matrix:

C =



1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
1 0 1 0 0 0 1 1
1 1 0 1 0 0 0 1
0 1 1 0 1 0 0 1
0 0 1 1 0 1 0 1
0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 2


We have CCT = 2I8 + 2J8, which would mean (if this was the incidence matrix of a
design) that r = 4, λ = 2 and n = r − λ = 2, so n is not a square. But since C is
not a 0/1-matrix, C is not an incidence matrix of a symmetric design, so this is not a
contradiction to the Bruck-Ryser-Chowla theorem.
We have det(CCT ) = 2304. The first formula of lemma 1.7, i.e.

det(AAT ) = (r + λ(v − 1))(r − λ)v−1,

is still correct for bordered matrices. This is because the proof only uses matrix operations
on the matrix (r − λ)I + λJ and does not use the structure of the underlying design.
Plugging in r = 4, λ = 2 and v = 8 gives the correct result. However, the second formula
for the determinant, i.e.

det(AAT ) = rk(r − λ)v−1,

does not hold for bordered matrices. This is no surprise because the number k is not
well-defined for bordered matrices as the scalar product of a column with itself (i.e. the
number of points contained in a block in the case of a design) is in general not the same
for all columns of a bordered matrix. If we ignored this and tried to use the second
formula for the symmetric case, i.e.

det(AAT ) = r2(r − λ)v−1,

we would get det(CCT ) = 2048, which is wrong. We see that r − λ does not need to
be a square for bordered matrices if we determine r and λ from the matrix C with
CCT = (r − λ)I + λJ by reading off the coefficients.

The second case of the Bruck-Ryser-Chowla theorem holds for arbitrary rational
matrices and we could use it for a square bordered matrix. However, it is only applicable
to matrices with an odd number of rows and columns. What can we say if the number of
rows and columns is even?
We could try to imitate the proof of the Bruck-Ryser-Chowla theorem for a symmetric
design with even v but we quickly run into a few problems doing so. The proof of theorem
5.1 mainly has three steps. First, we obtain an equation by viewing an incidence matrix
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as a quadratic form, then we eliminate the factor n as much as possible, and finally we
reduce the sum.
If we consider the case v ≡ 0 mod 4, then we start with the equation

z2
1 + . . .+ z2

v = n(x2
1 + . . .+ x2

v) + λs2.

We can group the terms of the form nx2
k on the right into sums of four terms without

any of them left over. Thus, by a change of basis the factor n disappears completely and
we obtain the equation

z2
1 + . . .+ z2

v = y2
1 + . . .+ y2

v + λs2.

This means that we cannot draw any conclusions about the order n of the design
from this equation as n has no influence on its solvability. Nevertheless, if we apply
Bruck-Ryser-Chowla elimination we are left with the equation

z2
v = y2

v + λs2.

Now we would let yv equal a non-zero rational number and conclude that this equation
must have a non-trivial integer solution. But this statement is of no use to us as the
equation

x2 = y2 + λz2

clearly has the non-trivial integer solution x = y = 1 and z = 0. So even though the
parameter λ appears in the reduced equation, it has no influence on the existence of an
integer solution. This means that even if we managed to construct a bordered matrix
with v ≡ 0 mod 4 rows and columns of a hypothetical projective plane of order n, it
would be of no use to us deciding whether such a plane exists (assuming that our only
tool is the above analogue of the Bruck-Ryser-Chowla theorem).
If we have v ≡ 2 mod 4, the situation does not improve. We again consider the equation

z2
1 + . . .+ z2

v = n(x2
1 + . . .+ x2

v) + λs2.

Since we can only eliminate the factor n in groups of four, we are left with the number
n appearing two times in the equation after the usual change of basis. Adding new
variables like we did in the case v ≡ 3 mod 4 also does not help because we would have
to add two new variables to have a group of four terms of the form nx2

k. But then the
number n appears two times on the left side of the equation and we are stuck with the
same situation. If we use Bruck-Ryser-Chowla elimination on an equation with two n’s
left, we end up with

z2
v−1 + z2

v = ny2
v−1 + ny2

v + λs2. (∗)
We cannot do one more elimination step in this situation because we would have to
achieve z2

v−1 = ny2
v−1 which is only possible if n is a square. However, if n is a square,

then the whole procedure gives us no new information as we could just eliminate the
factor n everywhere like we did in the case v ≡ 0 mod 4 and we would end up with an
equation that is always solvable. Thus, in the case v ≡ 2 mod 4 if n is not a square, we
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cannot do better than the equation (∗). But this equation is always solvable due to a
result called “Meyer’s theorem“. It states that a quadratic form over Q with at least five
variables non-trivially represents 0 if and only if not all coefficients have the same sign
(see [39] for a proof). Since n and λ are positive, this result ensures that there exists a
non-zero rational solution to the equation

z2
v−1 + z2

v − ny2
v−1 − ny2

v − λs2 = 0.

By clearing denominators, we can also obtain a non-zero integer solution. So the
existence of a non-zero solution to equation (∗) does not give us any information about
the parameters n and λ because there always exists a non-zero solution.
We see that a bordered matrix with an even number of rows and columns does not help
us deciding whether the incidence matrix it was built from exists or not because we do
not have a statement like the Bruck-Ryser-Chowla theorem in this case.
Now we will consider the case that a bordered matrix C built from an incidence matrix
A has an odd number of rows and columns. Then we can use the Bruck-Ryser-Chowla
theorem for the matrix C. For this case we will take a closer look at the construction of
bordered matrices.
We will assume that the number of rows and columns added to A is small. This is mainly
due to computational reasons. An exhaustive search for possible borders is harder for
bigger matrices because the number of possible columns and rows that can (theoretically)
be added to construct C grows rapidly when the bordered matrix gets bigger. On the
other hand, restrictions on the size of C allow us to obtain more detailed results about
bordered matrices that may not hold for bigger matrices, which can give rise to better
algorithms that compute bordered matrices faster.
In particular, we will mainly focus on adding exactly two columns and rows to A. The
reason for this is that we are interested in projective planes and these have an odd number
of points and lines. As we have seen that bordered matrices with an even number of rows
and columns do not help us, we need to add an even number of rows and columns to A.
Thus, the smallest possible case is adding two rows and columns. We will add these two
rows and columns in two steps. First, we will augment A by two columns and then we
will try to add two rows to this augmented matrix. This way we have control over the
numbers ñ and λ̃ such that CCT = ñI + λ̃J because they are determined by the scalar
product of a row with itself and the scalar product of two distinct rows, respectively.
An important fact about bordered matrices of small size is that the columns added
to A have to be constant. To see this consider a row (ai1, . . . , aiv, a, b) of A that was
augmented with the rational numbers a and b. The scalar product of any two distinct
rows of A is constant and we want that the same holds for every augmented row of A.
Thus, it follows that the scalar product of (a, b) with any of the other pairs (x, y) that
were added to another row of A is constant. So all of these pairs lie on a common line
that is orthogonal to (a, b) when viewed as points in R2.
Now if there was a row that was not augmented with the pair (a, b) but with a pair
(c, d) 6= (a, b), then the same argument holds for this row. All other pairs (x, y) that
were added to a row of A must lie on a common line orthogonal to (c, d) in R2. Now
since not only the scalar product of two distinct augmented rows is constant but also
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the scalar product of an augmented row with itself, we have that a2 + b2 = c2 + d2.
From this it follows that (a, b) and (c, d) are linearly independent because if (c, d) was
a multiple of (a, b), it could only be the pair (−a,−b) (otherwise a2 + b2 6= c2 + d2

and we assumed (c, d) 6= (a, b)). However, this cannot happen as a vector (x, y) cannot
have the same scalar product with both (a, b) and (−a,−b) unless a = b = 0, and this
case can be excluded because then we would obtain the same equation by applying the
Bruck-Ryser-Chowla theorem to the bordered matrix. Thus, the line orthogonal to (a, b)
intersects the line orthogonal to (c, d) in a unique point. Since by the argument above
all pairs other than (a, b) and (c, d) must lie on both lines, they must all be the same. It
is now easy to show that then every row must have been augmented with this pair. This
proves that to construct a bordered matrix with two added rows and columns we need to
augment every row with the same pair (a, b).
To complete the argument above, assume there exist two distinct rows of A that were
both augmented with the same pair of numbers. Say these are the numbers a and b.
Now consider a third row that was augmented using the pair (c, d). Since the scalar
product of any two distinct rows of C has to be constant, we must have a2 + b2 = ac+ bd
(consider the two rows augmented with (a, b) and a row augmented with (a, b) together
with the row augmented with (c, d)). However, this can only be the case if a = c and
b = d. To see this, note that a 6= c implies (a− c)2 > 0 and thus 2ac < a2 + c2. Similarly,
we have 2bc < b2 + d2. Recalling that a2 + b2 = c2 + d2 = ac+ bd it follows that

a2 + b2 + c2 + d2 = 2ac+ 2bd < a2 + c2 + b2 + d2,

which is a contradiction. So the columns added to our matrix A have to be constant. To
see why this does not have to be the case for bigger bordered matrices, take a projective
plane Π that has a proper subplane Π0. An incidence matrix of Π is essentially a bordered
matrix of Π0, but the rows and columns added are not constant. However, as long as the
number of added rows and colums is significantly smaller than the number of rows and
columns of A the added columns have to be constant. To see this, we can essentially use
the same idea as above with some additional arguments.
Now assume that we have chosen the two rational numbers a and b to augment the rows
of A. We will now take a look at the restrictions on the rows that we want to add to A.
First, by a similar argument like above, we have that the first v elements of an added row
have to be the same. So as a start, consider adding one row to the augmented matrix,
i.e. consider the matrix  A

a b
... ...
a b

c · · · c d e


for rational numbers c, d and e. If A is an incidence matrix of a symmetric 2-(v, k, λ)
design, then the scalar product of a row of A with itself is k and the scalar product of
two distinct rows is λ. So the product of a row of the bordered matrix with itself is
k + a2 + b2 and the product of two distinct rows is λ+ a2 + b2. If we want to construct
a bordered matrix, then these properties must also hold for the added rows. Thus, we
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must have
vc2 + d2 + e2 = k + a2 + b2, kc+ ad+ be = λ+ a2 + b2,

since A has v columns and exactly k ones per row. We can just compute some rows
satisfying these criterions independently and then check whether they are compatible, i.e.
whether the product of two distinct added rows is also equal to λ + a2 + b2. If this is
the case, we have found a bordered matrix. Note that if we wanted to compute a bigger
bordered matrix, then we would need to find a set of pairwise compatible rows.
If we manage to construct a bordered matrix C of A, then it satisfies

CCT = nI + (λ+ a2 + b2)J

because the scalar product of two distinct rows of C and the scalar product of a row
of C with itself both grow by a2 + b2 as compared to the scalar product of the rows of
A. Thus, the change is reflected only by a change of the factor in front of the ones matrix J .

Before we use the ideas above for the computation of bordered matrices, we give
an example of a bordered matrix and summarise our findings. The example is taken
from Xu’s article [57]. Xu has given an example of a square bordered matrix for the
(hypothetical) projective plane of order 12.

6.5 Example (Xu [57]). Assume that a finite projective plane of order 12 exists. Let
A be any of its incidence matrices, which are 157× 157-matrices. Then we can build a
square bordered matrix

C =
(
A B1
B2 B3

)
of size 160× 160 with

B1 =


2 0 2
... ... ...
2 0 2

 , B2 =



−1
7 · · · −1

7
15
91 · · · 15

91

− 5
259 · · · − 5

259


, B3 =



24
7

10
7 2

368
91

4
91 − 8

13
694
259 −818

259
72
37


.

We have checked that CCT = 12I160 + 9J160. Although, as pointed out before, this
example does not help us determining whether a projective plane of order 12 exists, it
does show that it is possible to construct a square bordered matrix for the projective
plane of order 12.

We summarise our findings about small square bordered matrices in the following
remark.

6.6 Remark. Assume that we are given a rational matrix A with AAT = nIv + λJv and
a square bordered matrix C of A.
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• C satisfies
CCT = nIw + λ̃Jw

for some numbers w and λ̃, i.e. n does not change.

• We do not have an analogue of the Bruck-Ryser-Chowla theorem for even v, so a
bordered matrix with an even number of rows and columns does not help us.

• The columns added to A are constant, i.e. the rows of A were all augmented with
the same numbers, if C is not significantly bigger than A.

• We have a way of quickly determining whether or not an equation of the form

x2 = ny2 + (−1) v−1
2 λz2

is solvable (see theorem 5.9). If we want to disprove the existence of a certain
symmetric design, we need to find a bordered matrix the gives rise to an unsolvable
equation.

6.3 Computational results
In this section we describe our findings from some attempts to construct bordered
matrices. To keep the runtime of our algorithm reasonably short, we will focus on small
cases. First of all, we fix some notation. In this section A denotes an incidence matrix of
projective plane of order n, i.e. we have

AAT = nI + J,

A is a (v × v)-matrix for v = n2 + n+ 1, every row of A has exactly n+ 1 ones and for
any two rows there is exactly one column where they both have the entry 1. Furthermore,
the letters a, b, c, d and e always stand for the numbers that we use to border the matrix
A, i.e. we consider the matrix  A

a b
... ...
a b

c · · · c d e

 .

Without loss of generality we can assume that:

• a and b are non-negative (otherwise replace a and d with −a and −d or b and e
with −b and −e as needed)

• a ≥ b (otherwise swap the two rightmost columns)

• a 6= 0 (otherwise we had a = b = 0 and we would obtain the same equation from
the Bruck-Ryser-Chowla theorem)
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Furthermore, if we can add one more row to the matrix above to obtain a bordered
matrix C, then we have

CCT = nI + (1 + a2 + b2)J.
First of all, we take a look at which values for a2 + b2 give us an unsolvable equation from
the Bruck-Ryser-Chowla theorem. If the equation is solvable, constructing a bordered
matrix is pointless. We do this for the solved cases n = 6 and n = 10 and for the smallest
cases where the existence of a projective plane of order n is neither proven nor disproven.
The fact that these values for a2 + b2 indeed lead to unsolvable equations is easily verified
using theorem 5.9.

n a2 + b2

6 2, 3, 6, 8, . . .
10 1, 2, 4, 6, 7, . . .
12 1, 2, 4, 6, 7, 9, . . .
15 1, 2, 4, 5, 6, 7, . . .
18 2, 4, 5, 9, . . .
20 1, 2, 5, 6, 7, 9, . . .

We have only listed all suitable values for a2 + b2 that are smaller than 10. Now for
every value s we need a list of pairs of rational numbers (a, b) such that a2 + b2 = s.
Since an integer is the sum of two rational squares if and only if it is the sum of two
integer squares (see theorem 4.2.3 in Beutelspacher’s book [5] for a proof), there are no
such pairs for some values. For example, 3 is not the sum of two integer squares, so it is
also not the sum of two rational squares. Thus, we cannot construct a bordered matrix
in which a2 + b2 = 3. However, these values can be obtained by adding four or more
columns so we did not leave them out in the list above. They can still be helpful when
constructing bigger bordered matrices.
For our purposes now, we can disregard the values 3, 6 and 7 because they are not sums
of two squares. Now we need non-trivial rational solutions of

a2 + b2 = s

for s ∈ {1, 2, 4, 5, 8, 9}. A list of the pairs we used in our computations can be found in
section 9.2 in the appendix.
We now describe the program that the author wrote to compute bordered matrices using
SageMath. The function “border2(n, a, b, depth)“ tries to find a bordered matrix of an
incidence matrix of a projective plane of order n by adding two columns and two rows to
it. It takes as input the order n of the hypothetical projective plane, the two numbers a
and b that are added to the right of the incidence matrix, and a parameter depth that is
an upper bound on the denominator of some rational numbers involved to make iteration
over rational numbers possible.
We are looking for rows to add to the bottom of an incidence matrix A of a projective
plane of order n that was already augmented with two columns on the right. Recall that
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6 An approach using bordered matrices

the augmented matrix with one added row looks like this A

a b
... ...
a b

c · · · c d e


and that the relevant equations for adding a row are

vc2 + d2 + e2 = k + a2 + b2, kc+ ad+ be = 1 + a2 + b2 (∗)

where v = n2 + n+ 1 and k = n+ 1. We will frequently use the following terms.

Definition. A row that satisfies both equations (∗) is called a possible row. Two possible
rows are called compatible if their scalar product is equal to 1 + a2 + b2.

Our goal is to find two compatible rows because then we have found a square bordered
matrix. We will also use these terms for matrices with more than two added columns (i.e.
a possible row is a row such that the scalar product with itself and the scalar product
with the other rows is consistent with the rest of the matrix).
First, note that d2, e2 ≥ 0, so we have

vc2 ≤ k + a2 + b2 ⇐⇒ |c| ≤
√
k + a2 + b2

v
.

As v is much bigger than k + a2 + b2 for small values of a2 + b2, this gives us a strong
bound on c. Thus, the first step of the program is to compute all rational numbers with
a denominator less than or equal to depth that satisfy the inequality above.
Now we would like to have a criterion that can rule out many values of c so we do not
have to test whether or not there exist suitable numbers d and e to complete the row.
Our approach is the following:
Since we have a > 0, we can solve the second equation (∗) for d. Plugging the result into
the equation vc2 + d2 + e2 = k + a2 + b2 eliminates the variable d and only the variables
c and e remain. We cannot eliminate more variables but what we can do is rearrange
all terms where the variable e shows up to the right side of the equation, complete the
square so that e only shows up inside of brackets and then rearrange the rest to the
other side of the equation. Then c is the only variable appearing on the left side of the
equation and the right side of the equation is a rational square, no matter which value
e has. The resulting equation is quite big and messy so we do not give it here but the
interested reader can find it in section 9.1 in the appendix.
The program now takes one of the possible precomputed values for c and checks whether
the formula yields a rational square when plugging in the value for c. If it does not,
we can immediately go to the next candidate for c. If it does return a square, the
corresponding value for e can be computed from the rearranged equation (in fact, there
are two possible values as we have to take square roots) and using this information, we
can easily compute the remaining value for d. Now we have a triple (c, d, e) that satisfies
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both equations (∗), and thus we have found a possible row. When a row is found the
program checks whether it is compatible with any row already computed. If it finds a
compatible row, it prints the compatible rows and terminates. Else it just stores the row
and tries the next value for c. If no compatible rows are found, there is no bordered
matrix for the given input where the denominator of c is less than or equal to depth.
It should be noted that the upper bound on the denominator only affects the number
c. The numbers d and e can have bigger denominators than c. We have checked that
our algorithm indeed produces possible rows for a bordered matrix (i.e. satisfying the
equations (∗)) and that every possible row where the denominator of c is less than or
equal to depth is computed by comparison with a simple brute force algorithm that
checks every combination.
Now we have a tool to compute bordered matrices for projective planes with exactly two
added rows and columns effectively. We will now describe the results of our computations.
For every combination of n and a2 + b2 we ran our program for every decomposition
listed in the appendix in section 9.2. We picked a value of depth = 1000 for every run.
One reason for this is the runtime because then most runs finish in less than 30 seconds.
Another reason is that we have seen that in the bordered matrix that Xu constructed
(see example 6.5) every denominator is less than 1000 which shows that it is possible to
construct a bordered matrix using “small“ numbers. Furthermore, the denominators of
the numbers that we add to the right of the matrix are small so it is reasonable to assume
that if a bordered matrix with these numbers on the right exists, then the denominators
in this matrix are not too big.
The following table contains our results. The first two columns contain our input. In
the third column we wrote down whether we found any possible rows and how many we
found per run on average (since we tested multiple different decompositions per value of
a2 + b2). The last column then shows whether we found compatible rows or not.
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n a2 + b2 found possible rows? found compatible rows?
6 2 yes (634 per run) no

8 no no
10 1 no no

2 no no
4 no no

12 1 yes (204 per run) no
2 yes (130 per run) no
4 yes (142 per run) no
9 no no

15 1 no no
2 no no
4 no no
5 yes (224 per run) no

18 2 no no
4 yes (228 per run) no
5 no no
9 no no

20 1 no no
2 no no
5 no no
9 no no

If no possible rows were found, we reran the search with a paramter of depth = 5000.
Still no possible rows were found.
It turns out that the numbers in the third column are not only the averages of the
numbers of possible rows we found. Every run returned the same number of possible
rows (although the rows themselves were of course different). In fact, we can prove the
following:
The number of possible rows that start with the number c only depends on a2 + b2, not
on the actual values of a and b. Thus, we get the same number of possible rows for
different decompositions of the integer a2 + b2 as the sum of two squares.
The proof is a little lengthy and technical, so we moved it to the appendix. See section
9.3 for the proof.
This insight allows us to do less computations without missing a bordered matrix. If we
do not find any possible rows for a decomposition a2 + b2, then we will also not find a
possible row for a different decomposition (as long as we run the program with the same
parameter depth). However, we do not know whether the above result also holds for the
number of compatible rows. If that was the case, then we could disregard testing different
decompositions completely and just stick to one fixed decomposition which would greatly
reduce the amount of computations needed.

Our algorithm seems to be exponential in the parameter depth while the parameters
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n, a and b have less influence on the runtime. These parameters mainly determine the
number of values for c that we need to check. Since v = n2 + n+ 1 grows asymptotically
faster than k = n+ 1, higher values for n give a tighter restriction on the possible values
for c. If n, a and b are fixed, doubling the parameter depth corresponds roughly to
multiplying the runtime by a factor of 4.

Constructing a bordered matrix with four added rows and columns is much harder
because in order to find a possible row we have to find five suitable values (one for the
first v columns and four for the rest). We do not have an efficient test to see whether
or not a possible row can start with the value c. For bordered matrices with two added
rows and columns this came down to one test.
What we can do is implement a test similar to what we describe in the appendix in
section 9.3, i.e. we can check whether a sphere and a hyperplane intersect. However,
although this test can rule out certain values immediately, the condition it checks is only
necessary. So we do not know whether a value that passes the test can actually be the
first element of a possible row. If it can, we also do not know how to compute a possible
row as there are still four unknowns left. We implemented a simple brute force algorithm
to search for possible rows for a matrix with four added columns. However, it takes a
long time to finish even for small inputs and we did not find a bordered matrix using it.
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7 Projective planes of small order and
related conjectures

In this chapter we want to give a little insight into a problem that we have not dealt with
in this thesis. We are mainly concerned with whether a projective plane of order n exists
or not, but we have not dealt with the question how many non-isomorphic planes of a
given order exist. There is a detailed article by Moorhouse about projective planes of
order less than 32 and we do not intend to repeat all of its contents here. We will state
some of the results and talk a little about related problems and conjectures. For further
details on projective planes of small order see Moorhouse’s article [40] and the list on his
website [42] where the reader can find incidence tables, generators of the automorphism
group, orbit lengths and some further information for all known projective planes of
small order.

First, all projective planes of order less than 8 are desarguesian. So for the orders
q = 2, 3, 4, 5, 7 and 8, the projective plane PG(2, q) is the only projective plane of
order q up to isomorphism. The smallest non-desarguesian projective plane has order
9. There are four different projective planes of order 9 up to isomorphism. One is the
desarguesian plane PG(2, 9) and another one is the Hughes plane of order 9 that we
described in chapter 4. The other two planes are the smallest Hall plane and its dual.
Lam, Kolesova and Thiel proved in 1991 that these are in fact all projective planes of
order 9 [32]. It is interesting to note that the Hall plane of order 9 and its dual are
proven to be the only projective planes of Lenz-Barlotti class IVa.3 and IVb.3, respectively.

We have already stated that there exists no projective plane of order 10. So the list
on Moorhouse’s website is known to be complete only up to n = 10. However, there
are complete classifications of some special cases. For example, all translation planes of
orders 16, 25, 27 and 49 are completely classified (see [17], [11], [16] and [38] respectively).
This is usually done by an exhaustive computer search. Since all translation planes of
prime order are desarguesian, there is no need for a classification in these cases.

It stands out that in the list on Moorhouse’s website, for every prime p there is only one
type of projective plane of order p. This leads us to the so called uniqueness conjecture. It
states that a finite projective plane of prime order must be desarguesian. We know that it
holds for translation planes, but it is not known whether it holds for arbitrary projective
planes. There also exists a slightly more general result: an affine plane of prime order
that admits a collineation group that is transitive on the points is desarguesian. For a
proof see the article by Hiramine [26]. Note that this is a generalisation of the result
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about translation planes as the collineations here do not have to be translations. In fact,
it can be shown that an affine plane with a transitive collineation group need not be a
translation plane.
There is a coding theoretic approach to the uniqueness conjecture by Bagchi [3]. We give
a brief description. Let Π be a projective plane, A be any of its incidence matrices and
C be the vector space generated by the columns of A over Fp for some prime number p.
Then C is called the p-ary code of Π. The key object of Bagchi’s approach is the complete
weight enumerator. Let Xi be a variable for every element i ∈ Fp. For an element c ∈ C
let ki(c) denote the number of times the element i ∈ Fp appears in c. Then the complete
weight enumerator of C is defined by

f(C) =
∑
c∈C

p−1∏
i=0

X
ki(c)
i ,

where all variables commute with each other. The complete weight enumerator contains
much information about the p-ary code and is independent of the incidence matrix A
that was used to construct C. Bagchi proved the following result:

7.1 Theorem (Bagchi, theorem 4.5 in [3]). Let Π be a projective plane of order p for
a prime p such that the complete weight enumerator of its p-ary code is the same as
the complete weight enumerator of the p-ary code of PG(2, p). If p > 29, then Π is
isomorphic to PG(2, p).

This gives us an alternate way of proving that a projective plane of prime order p
is isomorphic to PG(2, p). We decided to include this result because coding theoretic
approaches seem to be a strong technique for tackling problems about projective planes.
The non-existence of a projective plane of order 10 was also proven by coding-theoretic
means. We cannot say whether this result will be vital in proving or disproving the
uniqueness conjecture, but we can imagine that it might be important.

Another conjecture related to projective planes and codes is the Hamada-Sachar
conjecture. It is about the p-rank of a design D, i.e. the rank of an incidence matrix of
D when viewed over the field Fp. The statement of the conjecture is the following:

7.2 Conjecture (Conjecture 6.9.1 in [2]). Every projective plane of order ps, p a prime,
has p-rank at least

(
p+1

2

)s
+ 1 with equality if and only if it is desarguesian.

Hamada made a more general conjecture which was disproved by Tonchev [54]. How-
ever, the narrower conjecture above, stated indepently by Sachar, is still undecided.
Although the conjecture has no direct connection to the prime power conjecture, we
included it to further show the connections between projective planes and coding theory.
We would not be surprised if progress on one conjecture also benefited the other.
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8 Summary and conclusion
This thesis aimed to give an overview of the prime power conjecture including its history.
We have seen that the prime power conjecture is proven for a rich class of projective
planes called translation planes and all known finite non-translation planes have prime
power order as well. Since there are only a few ways known to construct non-translation
planes, it can be argued that the difficulty of the prime power conjecture is due to the
fact that we do not know non-translation planes well enough.

The strongest non-existence result about projective planes that we know is the Bruck-
Ryser theorem. It is a simple criterion and excludes an infinite set of orders. Apart from
the projective plane of order 10, every ruled out value is due to the Bruck-Ryser theorem.
We have also seen that coding theoretic approaches yielded many strong results about
projective planes. The existence of a projective plane of order 10 could not be ruled out
by the Bruck-Ryser theorem. However, the non-existence was ultimately shown using
coding theoretic techniques. Furthermore, as this thesis approaches the prime power
conjecture mainly from a combinatorial point of view, many techniques like coordinatisa-
tion have been left out. There are various ways to approach projective planes. Different
perspectives are always helpful to tackle problems from different angles and especially
coordinatisation and coding theory have proven themselves to be especially useful when
dealing with projective planes.

Our main goal was to analyse the approach by Xu using bordered matrices. The first
attempt using rectangular bordered matrices does not work. However, in theory we can
use the same approach using square bordered matrices. The main problem with this is
the runtime. Small bordered matrices can be computed fairly quickly, but computing
bigger bordered matrices is hard.
It can be argued that finding a “big“ bordered matrix is not easier than just listing all
possible incidence matrices. As long as we cannot compute bordered matrices with more
than two added rows and columns effectively, it is not really a viable method to tackle
the prime power conjecture. We can try to find a small bordered matrix, but we do not
know in advance whether it even exists. This is another disadvantage of this approach. It
is possible that there exist only bordered matrices such that the equation obtained from
the Bruck-Ryser-Chowla theorem is solvable or that there exist no bordered matrices at
all. In these cases the question of the existence of the underlying projective plane cannot
be settled using bordered matrices.
Furthermore, while the number of possible incidence matrices for a projective plane is
finite, allowing an exhaustive search to solve the problem, we cannot do this for bordered
matrices because there are infinitely many possibilities. However, bordered matrices with
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8 Summary and conclusion

two added rows and columns can be computed easily (if they exist). It does not hurt to
check for small bordered matrices and run our SageMath program for different inputs
since the function terminates quickly as long as the parameter depth is not too high. We
can also say in advance which inputs would lead to unsolvable equations if we found
a bordered matrix, eliminating unnecessary computations. After all, it takes only one
bordered matrix to prove the non-existence of a projective plane.
Our computations did not return any bordered matrices. It is possible that we could have
found a bordered matrix by using different inputs for our function. We could imagine
that further work about bordered matrices could lead to faster algorithms. However, it
could also be impossible to disprove the existence of a projective plane using bordered
matrices. We do not believe that this approach can solve the prime power conjecture
completely but we can imagine that the non-existence of some projective planes can be
shown using bordered matrices.
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9 Appendix

9.1 The SageMath program for bordered matrices
Here we describe our SageMath function “border2(n, a, b, depth)“ in a little more detail.
Recall that we assume that a projective plane of order n exists. Let A be any of its
incidence matrices. We take two rational numbers a and b with a 6= 0 and add two
constant columns with these numbers to the right of A. First, the program checks
whether a2 + b2 is an integer. This can prevent mistakes like typos in the input. Adding
a row to this augmented matrix looks like this A

a b
... ...
a b

c · · · c d e


and the relevant equations for adding a row are

vc2 + d2 + e2 = k + a2 + b2, kc+ ad+ be = 1 + a2 + b2.

We compute all rational numbers c with denominator less than or equal to depth that
satisfy

vc2 ≤ k + a2 + b2 ⇐⇒ |c| ≤
√
k + a2 + b2

v
.

Since we have a > 0, we can solve the second equation for d

kc+ ad+ be = 1 + a2 + b2 ⇐⇒ d = 1 + a2 + b2 − kc− be
a

and substitute the result for d in the first equation. Rearranging all terms containing e
to the right, completing the square and rearranging all remaining terms to the left side
of the equation leaves us with

(−va2 − k2)c2 + 2kc(1 + a2 + b2) + a2(k + a2 + b2)− (1 + a2 + b2)2

a2 + b2 +
(
kbc− b(1 + a2 + b2)

a2 + b2

)2

=
(
e+ kbc− b(1 + a2 + b2)

a2 + b2

)2

.

In this equation the only variable on the left side is c and the right side is a square.
The program now checks whether the left hand side returns a rational square when
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plugging in a value for c. If so, then we have found a possible row and we can compute
the two corresponding values for e and the associated value for d. The program then
checks whether the row is compatible with any row that was already computed. If it
finds a compatible row, it prints it together with the newly computed row and if not, it
saves the row and goes on to the next value for c.

9.2 Integers as sums of two squares
Here we give the pairs of rational numbers that we used as input for our function
“border2(n, a, b, depth)“. We need to write the integers 1, 2, 4, 5, 8 and 9 as the sum
of two rational squares. Equivalently, we can view this as searching non-zero integer
solutions to the equation

x2 + y2 = kz2

for k ∈ {1, 2, 4, 5, 8, 9}. If (x, y, z) is a non-trivial integer solution, then we can write(
x

z

)2
+
(
y

z

)2
= k,

so we get a decomposition of the integer k as the sum of two rational squares. We see
that we can restrict ourselves to triples (x, y, z) such that x, y and z do not share a
common factor.
For computing integer solutions, we just try all values for z up to a given bound and
check whether we can write the integer kz2 as the sum of two integer squares. We then
choose the ten smallest solutions with respect to z.

1 :
a 1 3

5
5
13

8
17

7
25

20
29

12
37

9
41

28
53

11
61

b 0 4
5

12
13

15
17

24
25

21
29

35
37

40
41

45
53

60
61

2 :
a 1 1

5
7
13

7
17

17
25

1
29

23
37

31
41

17
53

49
61

b 1 7
5

17
13

23
17

31
25

41
29

47
37

49
41

73
53

71
61

4 :
a 2 6

5
10
13

16
17

14
25

40
29

24
37

18
41

56
53

22
61

b 0 8
5

24
13

30
17

48
25

42
29

70
37

80
41

90
53

120
61
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5 :
a 2 2

5
2
13

19
13

1
17

22
17

38
25

19
29

22
29

11
37

b 1 11
5

29
13

22
13

38
17

31
17

41
25

62
29

61
29

82
37

8 :
a 2 2

5
14
13

14
17

34
25

2
29

46
37

62
41

34
53

98
61

b 2 14
5

34
13

46
17

62
25

82
29

94
37

98
41

146
53

142
61

9 :
a 3 9

5
15
13

24
17

21
25

60
29

36
37

27
41

84
53

33
61

b 0 12
5

36
13

45
17

72
25

63
29

105
37

120
41

135
53

180
61

It stands out that the same numbers turn up as denominators of the fractions. All
denominators are equal to 1 modulo 4 and are the sum of two squares. It is easy to prove
that this is always the case if the fractions are in lowest terms.

9.3 The existence of possible rows
Here we give the proof that the number of possible rows for a matrix A augmented with
a and b does not depend on the specific decomposition a2 + b2.
Consider the equations for a possible row. If we augment the rows of A with the numbers
a and b and want to know whether there exists a possible row starting with c, we have
to solve the equations

vc2 + d2 + e2 = k + a2 + b2, kc+ ad+ be = 1 + a2 + b2

in which the only unknowns are d and e. If we call them x and y and rearrange the
equations, we get

x2 + y2 = r2, ax+ by = s

for some rational numbers r and s with r ≥ 0. A rational solution (x, y) gives us a possible
row. Viewing the equations in the euclidean space R2, the first equation represents a
circle centred at the origin and second equation represents a line L (since a and b cannot
be both equal to zero). They can intersect in either 0, 1 or 2 points depending only on
the distance of L to the origin. From linear algebra, we know that the distance of L to
the origin is given by the formula

|s|√
a2 + b2

.
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Now note what happens when we switch from the decomposition a2+ b2 to a decomposition
ã2 + b̃2 with a2 + b2 = ã2 + b̃2. For the same value of c, we get the equations

x2 + y2 = r, ãx+ b̃y = s,

i.e. the values r and s stay the same. The number of solutions again only depends on
the distance of the line L̃ defined by the second equation to the origin. This distance is

|s|√
ã2 + b̃2

= |s|√
a2 + b2

.

As this distance is the same as the distance of L to the origin, it follows that the number
of solutions for the decomposition a2 + b2 is the same as the number of solutions for the
decomposition ã2 + b̃2.
Note that we have only proved that there exists the same number of real solutions. We
also have to prove that there exists the same number of rational solutions. We will prove
this by showing that if there exists a rational solution for a given decomposition, then
the solutions for all other decompositions are rational as well.
Consider again the system of equations for a possible row starting with c for a matrix
that was augmented with the rational numbers a and b

x2 + y2 = r2, ax+ by = s

with r = k + a2 + b2 − vc2 and s = 1 + a2 + b2 − kc and assume it is solvable over the
real numbers.
The first equation represents a circle with radius r centred at the origin and the second
equation represents a line orthogonal to the vector (a, b). The setup is visualized in the
following figure:

.
We start by computing where the line and the circle intersect. The distance of the line
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to the origin, denoted as d, is given by

d = |s|√
a2 + b2

.

To get to the intersection points, we can start at the origin, walk in the direction of the
vector (a, b) until we hit the line, and then walk along the line until we hit the circle. As
the vector (b,−a) is orthogonal to the vector (a, b), the intersection can be calculated as(

x
y

)
= d√

a2 + b2

(
a
b

)
±
√
r2 − d2
√
a2 + b2

(
b
−a

)
.

So the first coordinate is given by

x = |s|
a2 + b2 · a±

√
r2 − d2
√
a2 + b2

· b.

This number is rational if and only if the number
√
r2 − d2
√
a2 + b2

is rational. We see that this number only depends on a2 + b2 because this is true for r
and d. Thus, it follows that if this number is rational for a decomposition a2 + b2, it is
rational for all decompositions ã2 + b̃2 with a2 + b2 = ã2 + b̃2. This means that if the
solution for one decomposition is rational, it is rational for all decompositions.
In order to finish the proof, we have to mention that the set of possibles values for c that
we test also only depends on a2 + b2 and not on the specific values of a and b. So for
different decompositions we test the same values for c and every value gives the same
number of possible rows. Thus, the total number of possible rows is the same.

Note that this approach gives us an alternative way to compute bordered matrices. To
check if a possible row can start with the value c, we have to check if the number

√
r2 − d2
√
a2 + b2

is rational. If it is, we can compute the rest of the row with the formula above. If not,
there is no possible row starting with c. There is no significant difference in the runtime
of this algorithm compared to the one we described in section 9.1.
This idea can also be generalised to bigger bordered matrices by considering the inter-
section of a sphere and a hyperplane. If there exist no intersections for a given value c,
then there cannot be a possible row starting with c. This gives us a preliminary test to
quickly rule out some values. However, note that the existence of intersection points is
only a necessary but not a sufficient criterion for the existence of a possible row.
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